2019
Cost-aware active learning for named entity recognition in clinical text
Wei Q, Chen Y, Salimi M, Denny J, Mei Q, Lasko T, Chen Q, Wu S, Franklin A, Cohen T, Xu H. Cost-aware active learning for named entity recognition in clinical text. Journal Of The American Medical Informatics Association 2019, 26: 1314-1322. PMID: 31294792, PMCID: PMC6798575, DOI: 10.1093/jamia/ocz102.Peer-Reviewed Original ResearchConceptsAnnotation costUser studyActive learningAL methodsAL algorithmCost-CAUSEReal-world environmentsAnnotation taskAnnotation timeAnnotation accuracyEntity recognitionClinical textAnnotation dataPassive learningInformative examplesCurve scoreMost approachesSimulation areaUsersSyntactic featuresLearningCost measuresAlgorithmCostAnnotation
2017
An active learning-enabled annotation system for clinical named entity recognition
Chen Y, Lask T, Mei Q, Chen Q, Moon S, Wang J, Nguyen K, Dawodu T, Cohen T, Denny J, Xu H. An active learning-enabled annotation system for clinical named entity recognition. BMC Medical Informatics And Decision Making 2017, 17: 82. PMID: 28699546, PMCID: PMC5506567, DOI: 10.1186/s12911-017-0466-9.Peer-Reviewed Original ResearchConceptsNovel AL algorithmAL algorithmAnnotation timeUser studyEntity recognitionAnnotation systemNatural language processing modelsLanguage processing modelsAnnotation costMedical domainAnnotation processDifferent usersNER modelProcessing modelAlgorithmAL methodsResultsThe simulation resultsUsersSimulation resultsInformation contentFuture workRecognitionLarge numberSystemReal-life setting
2015
A study of active learning methods for named entity recognition in clinical text
Chen Y, Lasko T, Mei Q, Denny J, Xu H. A study of active learning methods for named entity recognition in clinical text. Journal Of Biomedical Informatics 2015, 58: 11-18. PMID: 26385377, PMCID: PMC4934373, DOI: 10.1016/j.jbi.2015.09.010.Peer-Reviewed Original ResearchConceptsClinical NER tasksMachine learningAnnotation costF-measureEntity recognitionNER taskActive learningLearning methodsI2b2/VA NLP challengeNatural language processing systemsPerformance of MLClinical natural language processing (NLP) systemsSequential labeling tasksSupervised machine learningAL methodsLanguage processing systemDiversity-based methodReal-time settingActive learning methodsNew AL methodsNER corpusDomain expertsUncertainty samplingAnnotation effortClinical text