2017
Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease
Lu Q, Powles RL, Abdallah S, Ou D, Wang Q, Hu Y, Lu Y, Liu W, Li B, Mukherjee S, Crane PK, Zhao H. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease. PLOS Genetics 2017, 13: e1006933. PMID: 28742084, PMCID: PMC5546707, DOI: 10.1371/journal.pgen.1006933.Peer-Reviewed Original ResearchConceptsTissue typesNon-coding elementsNon-coding genomeComplex human diseasesLate-onset Alzheimer's diseaseIndividual cell typesRelevant tissue typesGWAS traitsTranscriptomic annotationGenome annotationFunctional annotationDNA elementsHeritability enrichmentHuman genomeLarge international consortiaVariety of cellsGenomeHuman diseasesAnnotation dataCell typesGenetic variantsOrgan system categoriesComplex diseasesSimilar localizationAnnotationLeveraging functional annotations in genetic risk prediction for human complex diseases
Hu Y, Lu Q, Powles R, Yao X, Yang C, Fang F, Xu X, Zhao H. Leveraging functional annotations in genetic risk prediction for human complex diseases. PLOS Computational Biology 2017, 13: e1005589. PMID: 28594818, PMCID: PMC5481142, DOI: 10.1371/journal.pcbi.1005589.Peer-Reviewed Original ResearchMeSH KeywordsChromosome MappingData Interpretation, StatisticalData MiningDatabases, GeneticEpigenomicsGenetic Association StudiesGenetic Predisposition to DiseaseGenetic VariationGenome, HumanHumansLinkage DisequilibriumPolymorphism, Single NucleotideProportional Hazards ModelsQuantitative Trait LociRisk AssessmentConceptsGenome-wide association studiesFunctional annotationGenetic risk predictionDisease-associated genetic variantsLinkage disequilibriumIdentification of thousandsWide association studyHuman complex diseasesComplex diseasesGWAS summary statisticsHuman genetics researchAssociation studiesAnnoPredGenotype dataGenetic researchGenetic variantsRelevant variantsAnnotationDisequilibriumMost diseasesDiverse typesSummary statisticsVariantsBayesian frameworkPrecision medicine
2014
GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation
Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation. PLOS Genetics 2014, 10: e1004787. PMID: 25393678, PMCID: PMC4230845, DOI: 10.1371/journal.pgen.1004787.Peer-Reviewed Original ResearchConceptsGenome-wide association studiesFunctional annotationGWAS datasetsAnnotation informationStatistical approachMultiple GWAS datasetsGenome-wide markersPowerful statistical methodsSingle-phenotype analysisCentral nervous system genesRisk variantsNervous system genesGenotype-Tissue Expression (GTEx) databaseComplex diseasesGWAS data setsSignificant pleiotropic effectsCommon risk basisDifferent complex diseasesDNase-seq dataCell linesStatistical inferenceGenetic architectureGWAS hitsGWAS resultsNovel statistical approach