Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data
Wang Y, Fang H, Yang D, Zhao H, Deng M. Network Clustering Analysis Using Mixture Exponential-Family Random Graph Models and Its Application in Genetic Interaction Data. IEEE/ACM Transactions On Computational Biology And Bioinformatics 2017, 16: 1743-1752. PMID: 28858811, DOI: 10.1109/tcbb.2017.2743711.Peer-Reviewed Original ResearchConceptsExponential-family random graph modelsRandom graph modelsGraph modelStatistical network modelsHeterogeneity of networksLarge-scale genetic interaction networksReal social networksERGM parametersSubset of nodesOnline graphStatistical modelData sizeObserved networkEM algorithmNetwork informationGraph nodesMixture problemSocial networksFlexible wayNetwork modelNetwork clustersClassical methodsIncredible setInteraction dataNetworkOn Joint Estimation of Gaussian Graphical Models for Spatial and Temporal Data
Lin Z, Wang T, Yang C, Zhao H. On Joint Estimation of Gaussian Graphical Models for Spatial and Temporal Data. Biometrics 2017, 73: 769-779. PMID: 28099997, PMCID: PMC5515703, DOI: 10.1111/biom.12650.Peer-Reviewed Original ResearchConceptsGaussian graphical modelsTemporal dataGraphical modelsComplex data structuresJoint estimationMarkov random field modelRandom field modelParallel computingSelection consistencyData structureStatistical inferenceNeighborhood selection methodTemporal dependenciesEfficient algorithmIndividual networksMultiple groupsSpatial dataModel convergesNetwork estimationField modelSelection methodNetworkPosterior probabilitySimulation studyImproved estimation