2023
The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion
Onuchic L, Padovano V, Schena G, Rajendran V, Dong K, Shi X, Pandya R, Rai V, Gresko N, Ahmed O, Lam T, Wang W, Shen H, Somlo S, Caplan M. The C-terminal tail of polycystin-1 suppresses cystic disease in a mitochondrial enzyme-dependent fashion. Nature Communications 2023, 14: 1790. PMID: 36997516, PMCID: PMC10063565, DOI: 10.1038/s41467-023-37449-1.Peer-Reviewed Original ResearchConceptsPolycystin-1Nicotinamide nucleotide transhydrogenaseTerminal tailCystic phenotypeAutosomal dominant polycystic kidney diseaseCyst cell proliferationC-terminal domainAmino acid residuesLethal monogenic disorderC-terminal cleavageNucleotide transhydrogenaseAcid residuesMitochondrial functionTransgenic expressionPKD1 geneRedox stateShort fragmentsCell proliferationMonogenic disordersDominant polycystic kidney diseasePolycystic kidney diseaseGene therapy strategiesProteinPhenotypeFragments
2017
Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast*
Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, Mootha VK. Comparative Analysis of Mitochondrial N-Termini from Mouse, Human, and Yeast*. Molecular & Cellular Proteomics 2017, 16: 512-523. PMID: 28122942, PMCID: PMC5383775, DOI: 10.1074/mcp.m116.063818.Peer-Reviewed Original ResearchConceptsN-terminusMitochondrial proteinsCleavage eventsMature mitochondrial proteinN-terminal presequenceNovel protein isoformsN-end ruleAmino acidsMultiple cleavage eventsMitochondrial processingNuclear genomeHuman U937 cellsMature proteinMitochondrial peptidasesYeast proteinsProtein isoformsSequence levelCanonical motifsIndividual proteinsPresequenceDistinct enzymesPolypeptide cleavageCleavage siteYeastProtein
2014
Coupling between endocytosis and sphingosine kinase 1 recruitment
Shen H, Giordano F, Wu Y, Chan J, Zhu C, Milosevic I, Wu X, Yao K, Chen B, Baumgart T, Sieburth D, De Camilli P. Coupling between endocytosis and sphingosine kinase 1 recruitment. Nature Cell Biology 2014, 16: 652-662. PMID: 24929359, PMCID: PMC4230894, DOI: 10.1038/ncb2987.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCaenorhabditisCell MembraneCells, CulturedChlorocebus aethiopsCholesterolCOS CellsEndocytosisFluorescent Antibody TechniqueHEK293 CellsHeLa CellsHumansMiceModels, MolecularMutationPhosphotransferases (Alcohol Group Acceptor)Protein BindingProtein Structure, TertiarySequence AnalysisConceptsSphingosine kinase 1Hydrophobic patchN-BAR proteinsEndocytic membrane trafficExo/endocytosisPlasma membrane resultsMembrane trafficEndocytic intermediatesFunction mutantsMembrane recruitmentEndocytic membranesCellular compartmentsIntercellular signalingRecycling defectsSphingosine phosphorylationKinase 1Genetic studiesFunctional linkTubular invaginationsSphingolipid metabolismLipid bilayersEndocytosisEnzyme surfaceMembrane resultsRecruitment
2013
A Multiple Hypothesis Based Method for Particle Tracking and Its Extension for Cell Segmentation
Liang L, Shen H, Rompolas P, Greco V, De Camilli P, Duncan JS. A Multiple Hypothesis Based Method for Particle Tracking and Its Extension for Cell Segmentation. Lecture Notes In Computer Science 2013, 23: 98-109. PMID: 24683961, PMCID: PMC4122512, DOI: 10.1007/978-3-642-38868-2_9.Peer-Reviewed Original ResearchDynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors
Park RJ, Shen H, Liu L, Liu X, Ferguson SM, De Camilli P. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. Journal Of Cell Science 2013, 126: 5305-5312. PMID: 24046449, PMCID: PMC3828596, DOI: 10.1242/jcs.138578.Peer-Reviewed Original ResearchConceptsDynamin 1Dynamin inhibitorTKO cellsPeripheral membrane rufflingDouble knockoutDynamin 3 geneClathrin-mediated endocytosisTriple-knockout cellsDynamin-dependent processFluid-phase endocytosisDyngo-4aMembrane fissionMembrane rufflingDKO cellsDynamin 2Knockout cellsLow-level expressionCell physiologyDynaminEndocytosisTarget effectsDKO fibroblastsGenesCellsKO fibroblasts
2012
Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane
Sousa LP, Lax I, Shen H, Ferguson SM, De Camilli P, Schlessinger J. Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 4419-4424. PMID: 22371560, PMCID: PMC3311323, DOI: 10.1073/pnas.1200164109.Peer-Reviewed Original ResearchConceptsEGFR endocytosisPlasma membraneDynamin-mediated endocytosisEndocytosis of EGFRRole of endocytosisLow-affinity EGFRsEGF receptor activationCell surface receptorsMAPK responseMAPK stimulationEGFR degradationAkt stimulationCell signalingDynaminEGFR activationEGFR autophosphorylationAkt activationEndocytosisCell surfaceSurface receptorsMouse fibroblastsAkt responseReceptor activationHigh EGF concentrationsActivation
2011
Recruitment of Endophilin to Clathrin-Coated Pit Necks Is Required for Efficient Vesicle Uncoating after Fission
Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O, De Camilli P. Recruitment of Endophilin to Clathrin-Coated Pit Necks Is Required for Efficient Vesicle Uncoating after Fission. Neuron 2011, 72: 587-601. PMID: 22099461, PMCID: PMC3258500, DOI: 10.1016/j.neuron.2011.08.029.Peer-Reviewed Original Research
2010
Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin
Shen H, Ferguson SM, Dephoure N, Park R, Yang Y, Volpicelli-Daley L, Gygi S, Schlessinger J, De Camilli P. Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Molecular Biology Of The Cell 2010, 22: 493-502. PMID: 21169560, PMCID: PMC3038647, DOI: 10.1091/mbc.e10-07-0637.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCdc42 GTP-Binding ProteinCell LineChlorocebus aethiopsClathrinClathrin Heavy ChainsClathrin Light ChainsCoated Pits, Cell-MembraneCOS CellsDynamin IDynamin IIEndocytosisFibroblastsGene Knockout TechniquesHumansMiceMice, KnockoutPhosphorylationProtein BindingProtein-Tyrosine KinasesSignal TransductionConceptsEndocytic clathrin-coated pitsClathrin-coated pitsRNA interference-based approachesFundamental cellular processesGrowth factor receptor signalingWild-type cellsNonreceptor tyrosine kinaseActive Cdc42Cellular processesSpecific cargoClathrin assemblyEndocytic routeEndocytic vesiclesGrowth factor receptorTyrosine phosphorylationPhosphorylation stateClathrin boxTyrosine kinaseKinase phosphorylationCdc42Receptor signalingActivation-deactivation cyclePhosphorylationDynaminFactor receptor
2009
Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits
Ferguson S, Raimondi A, Paradise S, Shen H, Mesaki K, Ferguson A, Destaing O, Ko G, Takasaki J, Cremona O, Toole E, De Camilli P. Coordinated Actions of Actin and BAR Proteins Upstream of Dynamin at Endocytic Clathrin-Coated Pits. Developmental Cell 2009, 17: 811-822. PMID: 20059951, PMCID: PMC2861561, DOI: 10.1016/j.devcel.2009.11.005.Peer-Reviewed Original ResearchConceptsEndocytic roleEndocytic clathrin-coated pitsBAR domain proteinsSense membrane curvatureClathrin-coated pitsWild-type cellsGTPase dynaminEndocytic intermediatesHigher eukaryotesDomain proteinsMembrane fissionActin dynamicsNumerous proteinsDynaminMembrane curvatureProtein upstreamTubular neckConcerted actionProteinActinCoordinated actionKey playersFunctional relationshipCellsSequence of events