2023
Quantitative assessment of burst suppression as a predictor of seizure recurrence in refractory status epilepticus
Fong M, Pu K, Jadav R, Khan T, Hirsch L, Zaveri H. Quantitative assessment of burst suppression as a predictor of seizure recurrence in refractory status epilepticus. Clinical Neurophysiology 2023, 150: 98-105. PMID: 37060844, PMCID: PMC11265649, DOI: 10.1016/j.clinph.2023.03.011.Peer-Reviewed Original ResearchSeizure forecasting: Where do we stand?
Andrzejak R, Zaveri H, Schulze‐Bonhage A, Leguia M, Stacey W, Richardson M, Kuhlmann L, Lehnertz K. Seizure forecasting: Where do we stand? Epilepsia 2023, 64: s62-s71. PMID: 36780237, PMCID: PMC10423299, DOI: 10.1111/epi.17546.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2021
Passive Localization of the Central Sulcus during Sleep Based on Intracranial EEG
Alkawadri R, Zaveri HP, Sheth KN, Spencer DD. Passive Localization of the Central Sulcus during Sleep Based on Intracranial EEG. Cerebral Cortex 2021, 32: 3726-3735. PMID: 34921723, PMCID: PMC9764437, DOI: 10.1093/cercor/bhab443.Peer-Reviewed Original ResearchMeSH KeywordsBrain MappingDrug Resistant EpilepsyElectrocorticographyElectroencephalographyHumansMotor CortexSleepConceptsCentral sulcusMotor cortexMotor areaLeg motor areaPrimary motor cortexIntracranial EEG monitoringTongue motor areaLocal network activityMotor/premotorSM cortexIntractable epilepsySensorimotor cortexAnterior bankNREM sleepSensory cortexEEG monitoringZ-scoreHigher EEGCortexIntracranial EEGSignificant differencesPatientsSleepNetwork activityPrimary handCombining Transcranial Doppler and EEG Data to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage
Chen HY, Elmer J, Zafar SF, Ghanta M, Moura Junior V, Rosenthal ES, Gilmore EJ, Hirsch LJ, Zaveri HP, Sheth KN, Petersen NH, Westover MB, Kim JA. Combining Transcranial Doppler and EEG Data to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurology 2021, 98: e459-e469. PMID: 34845057, PMCID: PMC8826465, DOI: 10.1212/wnl.0000000000013126.Peer-Reviewed Original ResearchIncreased branched‐chain amino acids at baseline and hours before a spontaneous seizure in the human epileptic brain
Ong C, Damisah EC, Gruenbaum SE, Dhaher R, Deng Y, Sandhu MRS, Zaveri HP, Spencer DD, Eid T. Increased branched‐chain amino acids at baseline and hours before a spontaneous seizure in the human epileptic brain. Epilepsia 2021, 62: e88-e97. PMID: 33949690, PMCID: PMC11259155, DOI: 10.1111/epi.16920.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAmino Acids, Branched-ChainBrain ChemistryChildChild, PreschoolChromatography, High Pressure LiquidDrug Resistant EpilepsyElectrocorticographyElectroencephalographyEpilepsies, PartialExtracellular SpaceFemaleGlutamic AcidHumansIsoleucineMaleMicrodialysisMiddle AgedSeizuresTandem Mass SpectrometryYoung AdultConceptsSpontaneous seizuresDrug-resistant focal epilepsyExtracellular brain glutamateHuman epileptic brainBranched-chain amino acidsBranched chain amino acids valineRefractory epilepsyBrain microdialysisGlutamatergic neurotransmissionFocal epilepsySeizure onsetBrain glutamateEpileptic brainHuman patientsSeizuresBrain regionsDialysis samplesMammalian targetEpilepsyLiquid chromatography-tandem mass spectrometryBaselineBCAAIntracranial electroencephalographyChromatography-tandem mass spectrometryPatientsNetwork-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis
Dhaher R, Gruenbaum SE, Sandhu MRS, Ottestad-Hansen S, Tu N, Wang Y, Lee TW, Deshpande K, Spencer DD, Danbolt NC, Zaveri HP, Eid T. Network-Related Changes in Neurotransmitters and Seizure Propagation During Rodent Epileptogenesis. Neurology 2021, 96: e2261-e2271. PMID: 33722994, PMCID: PMC8166437, DOI: 10.1212/wnl.0000000000011846.Peer-Reviewed Original ResearchConceptsSpontaneous seizuresSeizure propagationSeizure focusMesial temporal lobe epilepsyExtracellular brain levelsTemporal lobe epilepsyExtracellular glutamate levelsRelevant rodent modelsGlutamine synthetase inhibitor methionine sulfoximineTransporter subtype 1Contralateral hippocampusLobe epilepsyBrain levelsBrain microdialysisExtracellular GABANeurotransmitter levelsSeizure initiationGlutamate levelsSeizure onsetEpilepsy networkRodent modelsSubtype 1EpileptogenesisHippocampusBrain regions
2019
Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy
Gruenbaum SE, Dhaher R, Rapuano A, Zaveri HP, Tang A, de Lanerolle N, Eid T. Effects of Branched-Chain Amino Acid Supplementation on Spontaneous Seizures and Neuronal Viability in a Model of Mesial Temporal Lobe Epilepsy. Journal Of Neurosurgical Anesthesiology 2019, 31: 247-256. PMID: 29620688, PMCID: PMC6170745, DOI: 10.1097/ana.0000000000000499.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acids, Branched-ChainAnimalsCell SurvivalDentate GyrusElectroencephalographyEpilepsy, Temporal LobeNeuronsRatsSeizuresConceptsMesial temporal lobe epilepsyTemporal lobe epilepsyLobe epilepsySpontaneous seizuresNeuron lossSeizure propagationBranched-chain amino acid supplementationChronic oral supplementationSpontaneous recurrent seizuresEffect of BCAAPotential novel treatmentBranched-chain amino acid leucineAmino acid supplementationAcute seizuresBCAA supplementationChronic seizuresConvulsive seizuresOral supplementationRecurrent seizuresRefractory epilepsyDentate hilusNeuronal viabilityAcid supplementationImmunohistochemical analysisNovel treatments
2018
Resting state connectivity in neocortical epilepsy: The epilepsy network as a patient-specific biomarker
Marino AC, Yang GJ, Tyrtova E, Wu K, Zaveri HP, Farooque P, Spencer DD, Bandt SK. Resting state connectivity in neocortical epilepsy: The epilepsy network as a patient-specific biomarker. Clinical Neurophysiology 2018, 130: 280-288. PMID: 30605890, DOI: 10.1016/j.clinph.2018.11.016.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultCohort StudiesElectrodes, ImplantedElectroencephalographyEpilepsyFemaleHumansMaleMiddle AgedNeocortexNerve NetRestRetrospective StudiesYoung AdultConceptsLocalization related epilepsyEpilepsy networkSeizure onset locationSingle-patient levelCorrelated network activityPatient-specific biomarkersRelated epilepsyConnectivity patternsNeocortical epilepsyPatient levelSeizure onsetInterictal periodAnatomic locationPatientsPossible biomarkersState connectivityCortical regionsSingle-subject levelTopographic distributionCohortNetwork disorderBrain networksEpilepsyNetwork activityBiomarkersSeizure prediction — ready for a new era
Kuhlmann L, Lehnertz K, Richardson MP, Schelter B, Zaveri HP. Seizure prediction — ready for a new era. Nature Reviews Neurology 2018, 14: 618-630. PMID: 30131521, DOI: 10.1038/s41582-018-0055-2.Peer-Reviewed Original ResearchConceptsUnpredictability of seizuresThe roles of surgery and technology in understanding focal epilepsy and its comorbidities
Spencer DD, Gerrard JL, Zaveri HP. The roles of surgery and technology in understanding focal epilepsy and its comorbidities. The Lancet Neurology 2018, 17: 373-382. PMID: 29553383, DOI: 10.1016/s1474-4422(18)30031-0.Peer-Reviewed Original ResearchConceptsFocal epilepsyNeuropsychiatric disordersComplete seizure controlPoor postsurgical outcomeRole of surgeryRefractory focal epilepsyOnset areaComorbid neuropsychiatric disordersSeizure onset areaBehavioral seizuresSeizure controlSurgical outcomesPostsurgical outcomesEpileptogenic tissueEpilepsy networkHigh prevalenceStructural brain networksIndividualised therapyPatientsBrain regionsEpilepsyElectrophysiological recordingsIntracranial electrophysiological recordingsStructural MRIGold standard
2016
Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition
Albright B, Dhaher R, Wang H, Harb R, Lee TW, Zaveri H, Eid T. Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition. Experimental Neurology 2016, 288: 122-133. PMID: 27769717, PMCID: PMC5547560, DOI: 10.1016/j.expneurol.2016.10.007.Peer-Reviewed Original ResearchConceptsMesial temporal lobe epilepsyNeuronal activationHippocampal formationHuman mesial temporal lobe epilepsyAnterior olfactory areaEntorhinal-hippocampal areaProcess of epileptogenesisC-Fos immunohistochemistryTemporal lobe epilepsyTypes of seizuresGlutamine synthetase inhibitionSurgical resectionPiriform cortexSeizure severityLobe epilepsyHippocampal astrocytesEpilepsy developmentEpileptogenic processElectroencephalogram monitoringOlfactory areasPharmacological interventionsSeizure phenotypeBed nucleusMidline thalamusStria terminalisRegional and network relationship in the intracranial EEG second spectrum
Joshi RB, Gaspard N, Goncharova II, Duckrow RB, Duncan D, Gerrard JL, Spencer DD, Hirsch LJ, Zaveri HP. Regional and network relationship in the intracranial EEG second spectrum. Clinical Neurophysiology 2016, 127: 3485-3491. PMID: 27692590, DOI: 10.1016/j.clinph.2016.09.003.Peer-Reviewed Original ResearchThe relationship between seizures, interictal spikes and antiepileptic drugs
Goncharova II, Alkawadri R, Gaspard N, Duckrow RB, Spencer DD, Hirsch LJ, Spencer SS, Zaveri HP. The relationship between seizures, interictal spikes and antiepileptic drugs. Clinical Neurophysiology 2016, 127: 3180-3186. PMID: 27292227, DOI: 10.1016/j.clinph.2016.05.014.Peer-Reviewed Original ResearchConceptsFirst seizureSeizure occurrenceAED taperSpike rateEEG monitoringMarker of inhibitionIntracranial EEG monitoringOccurrence of seizuresScalp EEG monitoringConsecutive patientsAntiepileptic drugsDrug taperHigh spike ratesInterictal spikesSeizuresDay 4Intracranial electrodesPatientsAEDsSignificant relationshipProgressive change in sleep over multiple nights of intracranial EEG monitoring
Joshi RB, Gaspard N, Goncharova II, Pavlova M, Duckrow RB, Gerrard JL, Spencer DD, Hirsch LJ, Zaveri HP. Progressive change in sleep over multiple nights of intracranial EEG monitoring. Clinical Neurophysiology 2016, 127: 2302-2307. PMID: 27072103, DOI: 10.1016/j.clinph.2016.02.018.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultBrainBrain MappingElectroencephalographyEpilepsyFemaleHumansMaleMiddle AgedSleepYoung Adult50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate
Cavus I, Widi GA, Duckrow RB, Zaveri H, Kennard JT, Krystal J, Spencer DD. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate. Epilepsia 2016, 57: 288-297. PMID: 26749134, DOI: 10.1111/epi.13269.Peer-Reviewed Original ResearchConceptsBasal glutamate levelsRefractory epilepsyGlutamate effluxBasal glutamateGlutamate levelsElectrical stimulationEpileptic hippocampusGlutamate releaseSeizure groupHz stimulationBrain glutamate releaseHippocampus of patientsStimulation-induced increaseEpilepsy monitoring unitStimulation-induced changesEpileptogenic hippocampusInduced seizuresSeizure inductionSpontaneous seizuresInterictal levelsGlutamate increaseAtrophic hippocampusElectroencephalography evaluationHippocampal stimulationHippocampal electrodes
2015
A comparison of the power spectral density of scalp EEG and subjacent electrocorticograms
Petroff OA, Spencer DD, Goncharova II, Zaveri HP. A comparison of the power spectral density of scalp EEG and subjacent electrocorticograms. Clinical Neurophysiology 2015, 127: 1108-1112. PMID: 26386645, DOI: 10.1016/j.clinph.2015.08.004.Peer-Reviewed Original ResearchInhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy
Gruenbaum SE, Wang H, Zaveri HP, Tang AB, Lee TS, Eid T, Dhaher R. Inhibition of glutamine synthetase in the central nucleus of the amygdala induces anhedonic behavior and recurrent seizures in a rat model of mesial temporal lobe epilepsy. Epilepsy & Behavior 2015, 51: 96-103. PMID: 26262937, PMCID: PMC4663049, DOI: 10.1016/j.yebeh.2015.07.015.Peer-Reviewed Original ResearchMeSH KeywordsAmygdalaAnalysis of VarianceAnhedoniaAnimalsBrainCentral Amygdaloid NucleusComorbidityDepressive DisorderDisease Models, AnimalElectroencephalographyEnzyme InhibitorsEpilepsy, Temporal LobeGlutamate-Ammonia LigaseHippocampusMaleMethionine SulfoximineNeuronsRatsRats, Sprague-DawleySeizuresConceptsMesial temporal lobe epilepsyTemporal lobe epilepsyRecurrent seizuresLobe epilepsyCentral nucleusMale Sprague-Dawley ratsPrevalence of depressionSprague-Dawley ratsGlutamine synthetase inhibitor methionine sulfoximineMeasures of anhedoniaRight CeA.Seizure activityAnhedonic behaviorDentate gyrusMedial amygdalaSucrose preferenceRat modelCommon causeAstrocytic enzymeBasolateral amygdalaLateral amygdalaOsmotic pumpPatientsEpilepsyAmygdala
2014
The spatial and signal characteristics of physiologic high frequency oscillations
Alkawadri R, Gaspard N, Goncharova II, Spencer DD, Gerrard JL, Zaveri H, Duckrow RB, Blumenfeld H, Hirsch LJ. The spatial and signal characteristics of physiologic high frequency oscillations. Epilepsia 2014, 55: 1986-1995. PMID: 25470216, PMCID: PMC5123742, DOI: 10.1111/epi.12851.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultBiological ClocksBrainBrain MappingBrain WavesChildElectroencephalographyEpilepsyFemaleHumansMaleROC CurveYoung AdultConceptsPhysiologic high-frequency oscillationsSeizure onsetEpileptic networkNon-rapid eye movement sleepComprehensive Epilepsy CenterMesial temporal structuresEye movement sleepHighest HFO ratesHigh-frequency oscillationsFirst seizureInvasive evaluationEpilepsy centersIntracranial evaluationMovement sleepPerirolandic regionEpileptiform dischargesParietooccipital regionOccipital lobeEpileptic sitesPatientsNonepileptic regionsPhysiologic eventsFast ripplesHFO ratesLonger durationIctal spread of medial temporal lobe seizures with and without secondary generalization: An intracranial electroencephalography analysis
Yoo JY, Farooque P, Chen WC, Youngblood MW, Zaveri HP, Gerrard JL, Spencer DD, Hirsch LJ, Blumenfeld H. Ictal spread of medial temporal lobe seizures with and without secondary generalization: An intracranial electroencephalography analysis. Epilepsia 2014, 55: 289-295. PMID: 24417694, PMCID: PMC4103687, DOI: 10.1111/epi.12505.Peer-Reviewed Original ResearchMeSH KeywordsAdultElectroencephalographyEpilepsies, PartialEpilepsy, GeneralizedEpilepsy, Temporal LobeFemaleHumansMaleMiddle AgedSeizuresVideo RecordingYoung AdultConceptsSecondary generalizationTemporal lobe seizuresFocal seizuresTemporal cortexMedial temporal lobe seizuresCortical regionsLow-voltage fast activityProminent activationAnteromedial temporal lobe resectionTonic-clonic seizuresSeizure-onset patternsTemporal lobe resectionLateral temporal cortexQuality of lifePosterior lateral temporal cortexTemporal lobe areasIntracranial electroencephalography studyMedial temporal lobe areasMedial temporal lobePosterior lateral temporal regionsIctal spreadHippocampal sclerosisSeizure spreadLobe resectionTemporal lobe
2013
Reply to about the electrophysiological basis of resting state networks
Duncan D, Duckrow RB, Pincus SM, Goncharova I, Hirsch LJ, Spencer DD, Coifman RR, Zaveri HP. Reply to about the electrophysiological basis of resting state networks. Clinical Neurophysiology 2013, 125: 1713-1714. PMID: 24440225, DOI: 10.1016/j.clinph.2013.12.098.Commentaries, Editorials and Letters