2021
Genome-wide mapping of Piwi association with specific loci in Drosophila ovaries
Liu N, Neuenkirchen N, Zhong M, Lin H. Genome-wide mapping of Piwi association with specific loci in Drosophila ovaries. G3: Genes, Genomes, Genetics 2021, 11: jkaa059. PMID: 33609367, PMCID: PMC8022938, DOI: 10.1093/g3journal/jkaa059.Peer-Reviewed Original ResearchConceptsPIWI-interacting RNAsProtein-coding genesDrosophila ovaryGermline stem cell maintenanceRole of piRNAsTermination sitesGenome-wide mappingGenomic binding profileTranscriptional termination sitesSpecific genomic sitesStem cell maintenanceRNA pathwaysTransposon repressionTranscriptional startEuchromatic regionsGene regulationEpigenetic regulationGenomic sitesCell maintenancePiwiSpecific lociMethylation signalsDiverse mechanismsTarget siteBinding sites
2018
The Role of Maternal HP1a in Early Drosophila Embryogenesis via Regulation of Maternal Transcript Production
Park AR, Liu N, Neuenkirchen N, Guo Q, Lin H. The Role of Maternal HP1a in Early Drosophila Embryogenesis via Regulation of Maternal Transcript Production. Genetics 2018, 211: 201-217. PMID: 30442760, PMCID: PMC6325692, DOI: 10.1534/genetics.118.301704.Peer-Reviewed Original ResearchConceptsHeterochromatin protein 1aMaternal transcriptsEarly Drosophila embryogenesisGermline developmentDrosophila embryogenesisMRNA splicingCell divisionTranscript productionProtein 1AEpigenetic factorsDownregulates genesEmbryogenesisGenesTranscriptsSplicingOogenesisTranscriptionOrganogenesisRegulationRoleProductionNeurogenesisDivisionDevelopmentTranslationMIWI2 targets RNAs transcribed from piRNA‐dependent regions to drive DNA methylation in mouse prospermatogonia
Watanabe T, Cui X, Yuan Z, Qi H, Lin H. MIWI2 targets RNAs transcribed from piRNA‐dependent regions to drive DNA methylation in mouse prospermatogonia. The EMBO Journal 2018, 37: embj201695329. PMID: 30108053, PMCID: PMC6138435, DOI: 10.15252/embj.201695329.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsChromatinDNA MethylationEpigenesis, GeneticMaleMiceMice, TransgenicRetroelementsRNA, Small InterferingSpermatogoniaConceptsDNA methylationRetrotransposon sequencesSmall RNAsArgonaute/Piwi proteinsPiwi protein MIWI2Suppressive epigenetic marksMouse prospermatogoniaChromatin statePIWI proteinsUnderlying molecular mechanismsDiverse organismsEpigenetic marksPiRNA clustersNascent RNAEpigenetic regulationTranslational regulationMIWI2RNA degradationRepeat sequencesGene expressionMolecular mechanismsTarget RNAMethylationRNAPiRNAs
2016
Tudor-SN Interacts with Piwi Antagonistically in Regulating Spermatogenesis but Synergistically in Silencing Transposons in Drosophila
Ku HY, Gangaraju VK, Qi H, Liu N, Lin H. Tudor-SN Interacts with Piwi Antagonistically in Regulating Spermatogenesis but Synergistically in Silencing Transposons in Drosophila. PLOS Genetics 2016, 12: e1005813. PMID: 26808625, PMCID: PMC4726654, DOI: 10.1371/journal.pgen.1005813.Peer-Reviewed Original ResearchConceptsPiRNA biogenesisPrimordial germ cellsPiwi expressionTudor-SNSomatic cellsGerm cellsDiverse molecular functionsPost-transcriptional regulationEmbryonic somatic cellsPiwi mutantsDosage-dependent mannerGermline developmentPIWI proteinsMutant phenotypeMeiotic cytokinesisMolecular functionsSpliceosome assemblyPiwiEpigenetic programmingDiverse functionsBiological functionsAdult ovariesBiogenesisTransposonMale fertility
2014
PIWI proteins and PIWI-interacting RNAs in the soma
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014, 505: 353-359. PMID: 24429634, PMCID: PMC4265809, DOI: 10.1038/nature12987.Peer-Reviewed Original ResearchConceptsPIWI-interacting RNAsPIWI proteinsPIWI-piRNA pathwayDiscovery of millionsWhole-body regenerationStem cell functionSomatic functionsDiverse organismsLower eukaryotesGenome rearrangementsSomatic cellsEpigenetic programmingBiological rolePathwayRNAProteinRecent studiesEukaryotesTransposonOrganismsBiologyUnanticipated dimensionsFunctionCellsRearrangement
2013
Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism
Peng JC, Lin H. Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Current Opinion In Cell Biology 2013, 25: 190-194. PMID: 23465540, PMCID: PMC3651849, DOI: 10.1016/j.ceb.2013.01.010.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsDNA Transposable ElementsDrosophila ProteinsEpigenesis, GeneticGene SilencingHistonesRNA, Small InterferingConceptsPIWI-interacting RNAsPIWI-piRNA pathwayBiogenesis of piRNAsSmall non-coding RNAsPost-transcriptional regulationNon-coding RNAsPIWI proteinsGene regulationSomatic cellsPiwi familyGene expressionGeneral mechanismSomatic functionsTransposonPathwayRNARegulationNovel classRecent studiesBiogenesisNew findingsProteinMechanismExpressionFunction
2011
A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster
Yin H, Sweeney S, Raha D, Snyder M, Lin H. A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster. PLOS Genetics 2011, 7: e1002380. PMID: 22194694, PMCID: PMC3240582, DOI: 10.1371/journal.pgen.1002380.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsChromatin Assembly and DisassemblyChromatin ImmunoprecipitationChromosomal Proteins, Non-HistoneChromosome MappingDrosophila melanogasterDrosophila ProteinsEpigenesis, GeneticEuchromatinGenome, InsectHeterochromatinHigh-Throughput Nucleotide SequencingHistonesRepetitive Sequences, Nucleic AcidRetroelementsRNA Polymerase IITranscription Initiation SiteConceptsHeterochromatin protein 1aChromatin modificationsStart siteChromatin modification landscapeKey chromatin modificationKey histone marksCell typesDrosophila cell typesRNA polymerase IIAdult Drosophila melanogasterTranscriptional start siteDiverse cell typesTranscription start siteFunctionality of genesHigh-Resolution WholeEuchromatic marksHistone codeHistone marksModification landscapeDrosophila melanogasterPolymerase IIGenome mapChromatin immunoprecipitationRegulatory sequencesSplicing junctionsThe microRNA regulation of stem cells.
Huang X, Lin H. The microRNA regulation of stem cells. WIREs Mechanisms Of Disease 2011, 1: 83-95. PMID: 23801669, DOI: 10.1002/wdev.5.Peer-Reviewed Original ResearchUniting Germline and Stem Cells: The Function of Piwi Proteins and the piRNA Pathway in Diverse Organisms
Juliano C, Wang J, Lin H. Uniting Germline and Stem Cells: The Function of Piwi Proteins and the piRNA Pathway in Diverse Organisms. Annual Review Of Genetics 2011, 45: 447-469. PMID: 21942366, PMCID: PMC3832951, DOI: 10.1146/annurev-genet-110410-132541.Peer-Reviewed Original ResearchConceptsPIWI-interacting RNAsPIWI proteinsDiverse organismsStem cellsArgonaute protein familyPIWI-piRNA pathwayStem cell maintenanceSomatic stem/progenitor cellsAdult stem cellsStem/progenitor cellsPiRNA pathwayGermline specificationAnimal phylogenyGenome integrityProtein familyPosttranscriptional regulationCell maintenanceProtein bindsSomatic cellsEpigenetic programmingGermlineProgenitor cellsProteinOrganismsCommon mechanism
2010
Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation
Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H. Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nature Genetics 2010, 43: 153-158. PMID: 21186352, PMCID: PMC3443399, DOI: 10.1038/ng.743.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAnimalsArgonaute ProteinsDNA Transposable ElementsDrosophila melanogasterDrosophila ProteinsElectrophoresis, Gel, Two-DimensionalEpigenesis, GeneticFemaleGene SilencingGenetic VariationGreen Fluorescent ProteinsHSP90 Heat-Shock ProteinsMaleOvaryPhenotypeRNA-Induced Silencing ComplexA Drosophila Chromatin Factor Interacts With the Piwi-Interacting RNA Mechanism in Niche Cells to Regulate Germline Stem Cell Self-Renewal
Smulders-Srinivasan TK, Szakmary A, Lin H. A Drosophila Chromatin Factor Interacts With the Piwi-Interacting RNA Mechanism in Niche Cells to Regulate Germline Stem Cell Self-Renewal. Genetics 2010, 186: 573-583. PMID: 20647505, PMCID: PMC2954472, DOI: 10.1534/genetics.110.119081.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsArgonaute ProteinsChromatinChromosomal Proteins, Non-HistoneDNA-Binding ProteinsDrosophilaDrosophila ProteinsEpigenesis, GeneticFemaleGerm CellsHedgehog ProteinsMalePolycomb-Group ProteinsPolymerase Chain ReactionRepressor ProteinsRNA, Small InterferingRNA-Induced Silencing ComplexSignal TransductionStem Cell NicheStem CellsConceptsGermline stem cellsNiche cellsEpigenetic programmingStem Cell Self-RenewalEnhancer of PolycombTrithorax group genesPotential genetic interactionsCell Self-RenewalNovel epigenetic mechanismStem cellsDrosophila ovaryGSC divisionChromatin factorsNiche signalingChromatin proteinsGenetic interactionsPiwi expressionStem cell defectEpigenetic regulationPiwiEpigenetic mechanismsGroup genesRNA mechanismExpression of hedgehogSelf-Renewal
2007
An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster
Yin H, Lin H. An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 2007, 450: 304-308. PMID: 17952056, DOI: 10.1038/nature06263.Peer-Reviewed Original ResearchpiRNAs in the Germ Line
Lin H. piRNAs in the Germ Line. Science 2007, 316: 397-397. PMID: 17446387, DOI: 10.1126/science.1137543.Peer-Reviewed Original Research