2024
BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications
Jayworth J, Decavoli C, Capobianco M, Menzel J, Adler S, Kocoj C, Freeze J, Crabtree R, Guo P, Batista V, Brudvig G. BODIPY Chemisorbed on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications. ACS Applied Materials & Interfaces 2024, 16: 14841-14851. PMID: 38488153, DOI: 10.1021/acsami.3c18827.Peer-Reviewed Original ResearchCarboxylic acid anchoring groupsAnchoring groupsElectron injectionSolar-driven water splittingTransient absorption spectroscopic studiesDye-sensitized photoelectrochemical cellsEfficiency of electron injectionSacrificial electron donorEfficient electron injectionElectron-hole recombinationAbsorption spectroscopic studiesBODIPY-based dyesWater splittingPhotoelectrochemical applicationsPhotoelectrochemical cellsSemiconducting photoelectrodesTiO2 surfacePhotoelectrochemical studiesPhotoexcited dyeSolar fuelsCharge transferMetal oxidesBinding modeCarboxylic acidsSpectroscopic studies
2021
Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water Splitting
Spies J, Swierk J, Kelly H, Capobianco M, Regan K, Batista V, Brudvig G, Schmuttenmaer C. Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water Splitting. ACS Applied Energy Materials 2021, 4: 4695-4703. DOI: 10.1021/acsaem.1c00305.Peer-Reviewed Original ResearchDFT calculationsAbsorption spectroscopyInterfacial electron transfer dynamicsUltrafast transient absorption spectroscopyInterfacial electron transferElectron transfer dynamicsUltrafast electron injectionConduction bandPeriodic DFT calculationsTransient absorption spectroscopyLinear absorption spectroscopyDye sensitizersWater splittingElectron transferTransfer dynamicsComposition of SnElectron acceptorAbsorption spectraElectron injectionD characterElectronic statesSpectroscopyPhotoanodeSnDye
2020
Nanotechnology for catalysis and solar energy conversion
Banin U, Waiskopf N, Hammarstrm L, Boschloo G, Freitag M, Johansson E, S J, Tian H, Johnston M, Herz L, Milot R, Kanatzidis M, Ke W, Spanopoulos I, Kohlstedt K, Schatz G, Lewis N, Meyer T, Nozik A, Beard M, Armstrong F, Megarity C, Schmuttenmaer C, Batista V, Brudvig G. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32: 042003. PMID: 33155576, DOI: 10.1088/1361-6528/abbce8.Peer-Reviewed Original ResearchDye-sensitized solar cellsPerovskite solar cellsSolar energy conversionMultiple exciton generationSolar cellsEnergy conversionOrganic photovoltaicsNanoscale characterization methodsNanoscale material characterizationApplication of nanotechnologySolar energy conversion efficiencySolar water splittingConversion efficiencyStructure-property relationshipsNanomaterial synthesisSemiconductor nanoparticlesSingle nanoparticlesScalable manufacturingEnergy conversion efficiencySemiconductor nanostructuresWater splittingFuel conversion efficiencySmart engineeringHybrid halide perovskitesBio-catalysis
2016
Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation
Li W, He D, Sheehan S, He Y, Thorne J, Yao X, Brudvig G, Wang D. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy & Environmental Science 2016, 9: 1794-1802. DOI: 10.1039/c5ee03871e.Peer-Reviewed Original ResearchWater oxidation catalystsHeterogeneous oxide catalystsSurface recombination rateOxide catalystsPerformance of hematiteBulk metal oxide catalystsHeterogeneous water oxidation catalystsPerformance of photoelectrodesO interfacePhotoelectrochemical water oxidationChemical energy conversionRecombination rateMetal oxide catalystsImproved charge transferAdditional charge-transfer pathwaysCharge transfer pathwayCombination of catalystsPEC performancePEC systemHematite photoanodesWater splittingWater oxidationIr catalystOxidation catalystPhotoelectrochemical reactions
2015
Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts
Li W, Sheehan S, He D, He Y, Yao X, Grimm R, Brudvig G, Wang D. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie 2015, 127: 11590-11594. DOI: 10.1002/ange.201504427.Peer-Reviewed Original ResearchWater oxidation catalystsSolar water splittingWater splittingAcidic solutionMolecular water oxidation catalystsStable water oxidation catalystsNear-unity Faradaic efficiencyOxygen evolution catalystsStable solar water splittingFaradaic efficiencyPhotoelectrochemical cellsImportant technological implicationsCatalystLow pHMonolayersTriplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer
Rivalta I, Yang K, Brudvig G, Batista V. Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer. ACS Catalysis 2015, 5: 2384-2390. DOI: 10.1021/acscatal.5b00048.Peer-Reviewed Original ResearchOxomanganese complexesTriplet oxygenOxygen evolutionWater splittingCatalytic oxygen evolutionO bond formationBiomimetic oxomanganese complexesNucleophilic water moleculeUnderlying reaction mechanismGreen plant chloroplastsPhotosynthetic oxygen evolutionWater ligandsCarboxylate ligandsInorganic coreMn complexesSuperoxo speciesNoninnocent roleCarboxylate groupsWater moleculesSubstrate waterBond formationSynthetic complexesCarboxylate buffersNucleophilic attackRedox potential
2008
Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II
Sproviero EM, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II. Journal Of The American Chemical Society 2008, 130: 3428-3442. PMID: 18290643, DOI: 10.1021/ja076130q.Peer-Reviewed Original ResearchConceptsSubstrate water moleculesWater moleculesMu-oxo bridgeOxygen-evolving complexWater splittingQuantum mechanics/molecular mechanics (QM/MM) hybrid methodsQuantum Mechanics/Molecular Mechanics StudySolar fuel production systemsPhotosystem IIX-ray diffraction structureMolecular mechanics studySecond coordination shellCyanobacterium Thermosynechococcus elongatusOxomanganese clusterDioxygen evolutionTerminal ligandsXRD structureCatalytic clustersCP43-R357Ligand exchangeCatalytic reactionCatalytic cycleReaction intermediatesS0 stateNucleophilic attack
2005
The mechanism of photosynthetic water splitting
McEvoy J, Gascon J, Batista V, Brudvig G. The mechanism of photosynthetic water splitting. Photochemical & Photobiological Sciences 2005, 4: 940-949. PMID: 16307106, DOI: 10.1039/b506755c.Peer-Reviewed Original ResearchConceptsProtein complex photosystem IIOxygen-evolving complexWater splittingPhotosynthetic water splittingGreen plant chloroplastsMolecular mechanics calculationsPhotosynthetic light reactionsRecent experimental resultsElectron transfer pathwayX-ray crystallographic modelSource of electronsProton concentration gradientPlant chloroplastsProduct protonsMechanics calculationsOxygenic photosynthesisDioxygen gasThylakoid lumenAerobic lifeElectronsThylakoid membranesCatalytic mechanismChemical energyPhotosystem IIManganese ions