2021
Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts
Lang C, Li J, Yang K, Wang Y, He D, Thorne J, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig G, Batista V, Waegele M, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021, 7: 2101-2117. DOI: 10.1016/j.chempr.2021.03.015.Peer-Reviewed Original ResearchWater oxidation mechanismWater oxidation reactionWater nucleophilic attack mechanismCo-based catalystsO bond formationNucleophilic attack mechanismKey elementary stepsHeterogeneous catalystsSalt electrolyteElectrode potentialApplied potentialBond formationLow driving forceO couplingElementary stepsMechanistic switchCatalystHigh driving forceDriving forceReactionAttack mechanismWater activityElectrolyteHereinPotential
2018
Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst
Rudshteyn B, Fisher K, Lant H, Yang K, Mercado B, Brudvig G, Crabtree R, Batista V. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. ACS Catalysis 2018, 8: 7952-7960. DOI: 10.1021/acscatal.8b02466.Peer-Reviewed Original ResearchKinetic isotope effectsWater nucleophilic attack mechanismWater oxidation catalystsWater nucleophilic attackD Kinetic Isotope EffectO bond formationUV-visible spectraDensity functional theoryElectrochemical stepWater oxidationElectrochemical analysisTurnover frequencyDerivative complexesBond formationRadical speciesRational designCis formFunctional theoryIsotope effectRate-limiting stepCatalystComplexesAttack mechanismMechanistic findingsDeprotonation