2018
Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups
Jiang J, Spies J, Swierk J, Matula A, Regan K, Romano N, Brennan B, Crabtree R, Batista V, Schmuttenmaer C, Brudvig G. Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups. The Journal Of Physical Chemistry C 2018, 122: 13529-13539. DOI: 10.1021/acs.jpcc.7b12405.Peer-Reviewed Original ResearchMetal oxide surfacesDirect interfacial electron transferTime-resolved terahertzInterfacial electron transferOxide surfaceSemiconductor surfacesPhotoelectrochemical stabilitySnO2 substratePhotoelectrochemical cellsInjection yieldTransient spectroscopySurfaceAqueous photoelectrochemical cellDye photosensitizerIET dynamicsTerahertzElectron transferSeries of linkersDirect contactSpectroscopyAbsorption spectroscopyTransferTransient absorption spectroscopyOverall length
2008
Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water Ligand
Cady C, Crabtree R, Brudvig G. Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water Ligand. 2008, 377-381. DOI: 10.1007/978-1-4020-6709-9_85.Peer-Reviewed Original ResearchTerminal water ligandsWater ligandsDinuclear manganese complexPH-dependent oxidationOxygen-Evolving ComplexRedox stepsManganese complexesRedox levelingElectron transferModel chemistryTerminal waterLigandsOxidationDeprotonationComplex occursComplexesPhotosystem IIChemistryProtonsMVPHWaterNarrow rangeTransfer
2007
Ultrafast Photooxidation of Mn(II)−Terpyridine Complexes Covalently Attached to TiO2 Nanoparticles
Abuabara S, Cady C, Baxter J, Schmuttenmaer C, Crabtree R, Brudvig G, Batista V. Ultrafast Photooxidation of Mn(II)−Terpyridine Complexes Covalently Attached to TiO2 Nanoparticles. The Journal Of Physical Chemistry C 2007, 111: 11982-11990. DOI: 10.1021/jp072380h.Peer-Reviewed Original ResearchInterfacial electron transferTiO2 nanoparticlesColloidal thin filmsVisible light sensitizationElectron transferTime-resolved measurementsSurface modificationNanoparticlesThin filmsTiO2 surfaceAqueous suspensionTransient measurementsEPR signalPhotoexcitationMeasurementsComputational simulationsFilmsFSSpectroscopyComplexesPhotooxidationTransferSurfaceSignals
1996
Characterization of the Reductase Domain of Rat Neuronal Nitric Oxide Synthase Generated in the Methylotrophic Yeast Pichia pastoris CALMODULIN RESPONSE IS COMPLETE WITHIN THE REDUCTASE DOMAIN ITSELF*
Gachhui R, Presta A, Bentley D, Abu-Soud H, McArthur R, Brudvig G, Ghosh D, Stuehr D. Characterization of the Reductase Domain of Rat Neuronal Nitric Oxide Synthase Generated in the Methylotrophic Yeast Pichia pastoris CALMODULIN RESPONSE IS COMPLETE WITHIN THE REDUCTASE DOMAIN ITSELF*. Journal Of Biological Chemistry 1996, 271: 20594-20602. PMID: 8702805, DOI: 10.1074/jbc.271.34.20594.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCalmodulinCalmodulin-Binding ProteinsDNA PrimersElectron Spin Resonance SpectroscopyFlavinsFlavoproteinsIsoenzymesMolecular Sequence DataNADH DehydrogenaseNeuronsNitric Oxide SynthaseOxidation-ReductionPichiaRatsRecombinant ProteinsSpectrometry, FluorescenceTryptophanConceptsElectron transferFlavin semiquinoneReductase domainNADPH-dependent flavin reductionArtificial electron acceptorsADP affinity chromatographyHeme-containing oxygenase domainCalmodulin responseNNOS reductase domainAnaerobic titrationFlavin reductionElectron acceptorNNOS reductaseFlavin-containing reductase domainReductase proteinSemiquinoneFlavinFlavin fluorescenceOxygenase domainAffinity chromatographyCytochrome c.Pure proteinCytochrome cTransferAcceptor