2020
Nanotechnology for catalysis and solar energy conversion
Banin U, Waiskopf N, Hammarstrm L, Boschloo G, Freitag M, Johansson E, S J, Tian H, Johnston M, Herz L, Milot R, Kanatzidis M, Ke W, Spanopoulos I, Kohlstedt K, Schatz G, Lewis N, Meyer T, Nozik A, Beard M, Armstrong F, Megarity C, Schmuttenmaer C, Batista V, Brudvig G. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32: 042003. PMID: 33155576, DOI: 10.1088/1361-6528/abbce8.Peer-Reviewed Original ResearchDye-sensitized solar cellsPerovskite solar cellsSolar energy conversionMultiple exciton generationSolar cellsEnergy conversionOrganic photovoltaicsNanoscale characterization methodsNanoscale material characterizationApplication of nanotechnologySolar energy conversion efficiencySolar water splittingConversion efficiencyStructure-property relationshipsNanomaterial synthesisSemiconductor nanoparticlesSingle nanoparticlesScalable manufacturingEnergy conversion efficiencySemiconductor nanostructuresWater splittingFuel conversion efficiencySmart engineeringHybrid halide perovskitesBio-catalysis
2015
Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts
Li W, Sheehan S, He D, He Y, Yao X, Grimm R, Brudvig G, Wang D. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts. Angewandte Chemie 2015, 127: 11590-11594. DOI: 10.1002/ange.201504427.Peer-Reviewed Original ResearchWater oxidation catalystsSolar water splittingWater splittingAcidic solutionMolecular water oxidation catalystsStable water oxidation catalystsNear-unity Faradaic efficiencyOxygen evolution catalystsStable solar water splittingFaradaic efficiencyPhotoelectrochemical cellsImportant technological implicationsCatalystLow pHMonolayers