2024
Selecting between Ammonia and Water Oxidation: Electrochemical Oxidation of Ammonia in Water Using an Organometallic–Inorganic Hybrid Anode
Liu H, Jayworth J, Crabtree R, Brudvig G. Selecting between Ammonia and Water Oxidation: Electrochemical Oxidation of Ammonia in Water Using an Organometallic–Inorganic Hybrid Anode. ACS Catalysis 2024, 14: 2842-2846. DOI: 10.1021/acscatal.3c05899.Peer-Reviewed Original ResearchHybrid anodeWater oxidationBlue layerElectrochemical oxidation of ammoniaOxidation of ammoniaElectrochemical oxidationSurface poisoningAqueous solventAmmonia oxidationOptimal operating conditionsAqueous solutionAmbient conditionsE appOperating conditionsAnodeFormation of nitriteOxidationOptimum selectionAmmoniaSolventNitrateNanoclustersDinitrogenElectrodeEcofriendly products
2023
Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex
Liu H, Lant H, Troiano J, Hu G, Mercado B, Crabtree R, Brudvig G. Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. ECS Meeting Abstracts 2023, MA2023-01: 2691-2691. DOI: 10.1149/ma2023-01552691mtgabs.Peer-Reviewed Original ResearchWater oxidationAmmonia oxidationO bond formationInitial mechanistic studiesMolecular catalystsCopper complexesMetal electrocatalystsFaradaic efficiencyAqueous mediaBond formationHigh selectivityOxidation processN2 productTitle reactionOxidationMechanistic studiesCatalysisComplexesRoom temperatureFriendly productionWaterElectrocatalystsElectrocatalyticNitrateCatalystLigand Tuning in Cu(pyalk)2 Water Oxidation Electrocatalysis
Cody C, Caes Z, Capobianco M, Mercado B, Crabtree R, Brudvig G. Ligand Tuning in Cu(pyalk)2 Water Oxidation Electrocatalysis. Inorganics 2023, 11: 229. DOI: 10.3390/inorganics11060229.Peer-Reviewed Original ResearchWater oxidationWater oxidation electrocatalysisAnalogous copper complexesWater oxidation electrocatalystsArtificial photosynthetic systemsElectron-donating groupsSolar energy conversionPyalk ligandCatalyst tuningLigand tuningOxidation electrocatalystsCopper complexesFaradaic efficiencyLigand modificationCatalytic propertiesLigand formsAttractive scaffoldFirst-principles predictionPara positionGood activityMolecular systemsPhotosynthetic systemsEnergy conversionComplexesOxidationElectrochemical Ammonia Oxidation with Molecular Catalysts
Liu H, Lant H, Cody C, Jelušić J, Crabtree R, Brudvig G. Electrochemical Ammonia Oxidation with Molecular Catalysts. ACS Catalysis 2023, 13: 4675-4682. DOI: 10.1021/acscatal.3c00032.Peer-Reviewed Original ResearchSelective Methane Oxidation by Heterogenized Iridium Catalysts
Li H, Fei M, Troiano J, Ma L, Yan X, Tieu P, Yuan Y, Zhang Y, Liu T, Pan X, Brudvig G, Wang D. Selective Methane Oxidation by Heterogenized Iridium Catalysts. Journal Of The American Chemical Society 2023, 145: 769-773. PMID: 36594824, DOI: 10.1021/jacs.2c09434.Peer-Reviewed Original ResearchConceptsSelective methane oxidationValue-added oxygenatesPrepared catalystIr complexesIr centerOxide supportIridium catalystEasy separationC bondDirect CHImmobilization approachCatalystMethyl migrationOH productionMethane oxidationAcetic acidDirect routeKey stepCHCarbonylationElectrophilicityOxygenatesCarbonylBondsOxidation
2022
Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts
Zhao Y, Dai S, Yang K, Cao S, Materna K, Lant H, Kao L, Feng X, Guo J, Brudvig G, Flytzani-Stephanopoulos M, Batista V, Pan X, Wang D. Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2206850120. PMID: 36577066, PMCID: PMC9910598, DOI: 10.1073/pnas.2206850120.Peer-Reviewed Original Research
2021
Forging O–O Bonds
Cody C, Brudvig G. Forging O–O Bonds. Joule 2021, 5: 1923-1925. DOI: 10.1016/j.joule.2021.07.013.Peer-Reviewed Original Research
2020
Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex
Gisriel C, Zhou K, Huang H, Debus R, Xiong Y, Brudvig G. Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex. Joule 2020, 4: 2131-2148. DOI: 10.1016/j.joule.2020.07.016.Peer-Reviewed Original ResearchOxygen-evolving complexPhotosystem II enzymeWater oxidation complexWater oxidationMetal clustersMechanism of photoactivationActive siteMonomeric photosystem IIPhotosystem IICryo-EM structureStructural rearrangementsComplexesPhotoactivationSynechocystis spPeripheral subunitsCationsComputational techniquesOxidationOverall biogenesisStructureMesophilic cyanobacteriumOxygenPCC 6803II enzymesPSII
2018
Catalysing water oxidation using nature’s metal
Brudvig G. Catalysing water oxidation using nature’s metal. Nature Catalysis 2018, 1: 10-11. DOI: 10.1038/s41929-017-0013-1.Peer-Reviewed Original Research
2017
Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand
Sharninghausen L, Sinha S, Shopov D, Mercado B, Balcells D, Brudvig G, Crabtree R. Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand. Angewandte Chemie 2017, 129: 13227-13231. DOI: 10.1002/ange.201707593.Peer-Reviewed Original ResearchCoordination complexesO-donor organic ligandsMononuclear coordination complexesO-donor environmentMetal-centered oxidationX-ray crystallographyOrganic ligandsDonor strengthAlkoxide groupsDFT calculationsD orbitalsUnprecedented stabilityComplexesLigandsOxidationIR-VIsomersXPSCrystallographyV complexSynthesisCharacterizationStabilityCalculationsDegradationElectrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand
Fisher K, Materna K, Mercado B, Crabtree R, Brudvig G. Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis 2017, 7: 3384-3387. DOI: 10.1021/acscatal.7b00494.Peer-Reviewed Original ResearchWater oxidationElectrocatalytic water oxidationPotential electrolysis experimentsWater oxidation electrocatalystsStrong donor characterCatalyst degradationTurnover frequencyElectrolysis experimentsDonor characterCatalytic turnoverBasic conditionsOxidationHarsh conditionsOxidation resistanceElectrocatalystsCatalystLigandsCopperComplexesO2NHEFormationDegradation
2016
Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor
Materna K, Rudshteyn B, Brennan B, Kane M, Bloomfield A, Huang D, Shopov D, Batista V, Crabtree R, Brudvig G. Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor. ACS Catalysis 2016, 6: 5371-5377. DOI: 10.1021/acscatal.6b01101.Peer-Reviewed Original ResearchIridium Water Oxidation CatalystsMetal oxide semiconductor surfacesWater oxidation catalystsExperimental IR spectraOxide semiconductor surfaceWater oxidationHeterogenized catalystTurnover frequencyIR spectraSilatrane precursorCovalent attachmentFunctional groupsTurnover numberM KNO3CatalystSemiconductor surfacesPrecatalystOverpotentialCatalysisComputational modelingOxidationPrecursorsKNO3SpectraSurfaceA new method for the synthesis of β-cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices
Antoniuk-Pablant A, Terazono Y, Brennan B, Sherman B, Megiatto J, Brudvig G, Moore A, Moore T, Gust D. A new method for the synthesis of β-cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices. Journal Of Materials Chemistry A 2016, 4: 2976-2985. DOI: 10.1039/c5ta07226c.Peer-Reviewed Original ResearchPhotoelectrosynthetic cellsWater oxidationNew synthetic methodSolar cellsSensitive functional groupsHigh positive potentialsElectrochemical propertiesRedox mediatorSynthetic methodZinc porphyrinMost porphyrinsPhotoelectrochemical devicesFunctional groupsMild conditionsPresence of TrisPorphyrinsPotential candidateNanoparticulate TiOSensitizersOxidationPositive potentialsDyeMoleculesImproved yieldPhotocurrent
2014
Photoelectrochemical oxidation of a turn-on fluorescent probe mediated by a surface MnII catalyst covalently attached to TiO2 nanoparticles
Durrell A, Li G, Koepf M, Young K, Negre C, Allen L, McNamara W, Song H, Batista V, Crabtree R, Brudvig G. Photoelectrochemical oxidation of a turn-on fluorescent probe mediated by a surface MnII catalyst covalently attached to TiO2 nanoparticles. Journal Of Catalysis 2014, 310: 37-44. DOI: 10.1016/j.jcat.2013.07.001.Peer-Reviewed Original ResearchVisible light illuminationTwo-proton oxidationHigh fluorescence quantum yieldFluorescence quantum yieldMultielectron chemistryOrganic linkersSustained photocurrentManganese complexesEffective photoanodeTiO2 electrodeNew photoanodesPhotoelectrochemical oxidationFluorescent behaviorTwo-electronBare TiO2TiO2 nanoparticlesFluorescent probeFluorescent compoundsQuantum yieldNanomolar sensitivityOxidationPhotoanodeExcellent substrateSubstrate oxidationReal-time monitoring
2013
Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant
Zhou M, Hintermair U, Hashiguchi B, Parent A, Hashmi S, Elimelech M, Periana R, Brudvig G, Crabtree R. Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant. Organometallics 2013, 32: 957-965. DOI: 10.1021/om301252w.Peer-Reviewed Original ResearchH oxidationTerminal oxidantTime-resolved dynamic light scatteringSodium periodateEfficient terminal oxidantH bond cleavageMetal oxide nanoparticlesDynamic light scatteringFunctional group toleranceKinetic isotope effectsMethylene oxidationRetention of configurationCyclohexane oxidationWater oxidationIridium precatalystBond cleavageSulfonate groupsHomogeneous pathwayH bondsGroup toleranceNatural productsOxide nanoparticlesLight scatteringOxidationUseful yields
2011
Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors
Blakemore J, Schley N, Olack G, Incarvito C, Brudvig G, Crabtree R. Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chemical Science 2011, 2: 94-98. DOI: 10.1039/c0sc00418a.Peer-Reviewed Original ResearchWater oxidation catalystsOrganometallic precursorsAnodic depositionRobust water oxidation catalystsLight-driven oxidationInorganic heterogeneous catalystsArtificial photosynthesisWater oxidationCatalyst materialsHeterogeneous catalystsFour-electronAqueous solutionCatalystPhotosystem IIOxidationPrecursorsSustainable sourceElectrodepositionIridiumDepositionMaterialsComplexesReactionOxygenAqua
2008
Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water Ligand
Cady C, Crabtree R, Brudvig G. Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water Ligand. 2008, 377-381. DOI: 10.1007/978-1-4020-6709-9_85.Peer-Reviewed Original ResearchTerminal water ligandsWater ligandsDinuclear manganese complexPH-dependent oxidationOxygen-Evolving ComplexRedox stepsManganese complexesRedox levelingElectron transferModel chemistryTerminal waterLigandsOxidationDeprotonationComplex occursComplexesPhotosystem IIChemistryProtonsMVPHWaterNarrow rangeTransfer
2004
Structure-based mechanism of photosynthetic water oxidation
McEvoy J, Brudvig G. Structure-based mechanism of photosynthetic water oxidation. Physical Chemistry Chemical Physics 2004, 6: 4754-4763. DOI: 10.1039/b407500e.Peer-Reviewed Original ResearchOxygen-evolving complexO bond-forming stepSubstrate water moleculesX-ray crystal structureBond-forming stepPhotosynthetic water oxidationWater splitting reactionResolution X-ray crystal structureCyanobacterial photosystem IIÅ resolution X-ray crystal structureCP43-Arg357Water oxidationStructure-based mechanismWater moleculesCertain amino acid residuesAmino acid residuesCrystal structureMechanistic functionPhotosystem IIArginine residuesCrystallographic informationLends weightResiduesNucleophilesOxidation
2002
Water oxidation chemistry of photosystem II
Vrettos J, Brudvig G. Water oxidation chemistry of photosystem II. Philosophical Transactions Of The Royal Society B Biological Sciences 2002, 357: 1395-1405. PMID: 12437878, PMCID: PMC1693042, DOI: 10.1098/rstb.2002.1136.Peer-Reviewed Original ResearchConceptsManganese clusterProton-coupled electron transfer stepsO bond-forming stepPhotosystem IIWater oxidation chemistryBond-forming stepElectron transfer stepFour-electron oxidationTetranuclear manganese clusterOxidation chemistryWater moleculesModel chemistryO bondNucleophilic attackIon selectivityBiophysical studiesChemistryCalcium sitesOxidationSpecific roleModel systemComplexesHis190Recent studiesWaterProton-Coupled Electron Transfer Involving Tyrosine Z in Photosystem II †
Kühne H, Brudvig G. Proton-Coupled Electron Transfer Involving Tyrosine Z in Photosystem II †. The Journal Of Physical Chemistry B 2002, 106: 8189-8196. DOI: 10.1021/jp0206222.Peer-Reviewed Original ResearchO2-evolving complexYZ oxidationOxidation reactionTyrosine ZProton-coupled electron transfer stepsManganese-depleted photosystem IIPhotosystem IIWater oxidation reactionOxidation of waterOxidation of YZElectron transfer stepProton inventory experimentsProton movementWater oxidationElectron transferRedox mechanismNumber of protonsTransfer stepOxidation processOnset temperatureSecondary donorDeuterated samplesOxidationIsotope effectChloride ions