2004
Location of EPR-Active Spins Buried in Proteins from the Simulation of the Spin−Lattice Relaxation Enhancement Caused by Dy(III) Complexes †
MacArthur R, Brudvig G. Location of EPR-Active Spins Buried in Proteins from the Simulation of the Spin−Lattice Relaxation Enhancement Caused by Dy(III) Complexes †. The Journal Of Physical Chemistry B 2004, 108: 9390-9396. DOI: 10.1021/jp0355713.Peer-Reviewed Original ResearchRelaxation enhancement agentsPower saturation characteristicsIndividual moleculesRadical spinsPower saturation experimentsFrozen solutionsRelaxation enhancementEPR signalSeries of spectraProtein moleculesProtein samplesProtein solutionsStructural dataMoleculesFree radicalsHorseradish peroxidaseRelaxation rateComputational methods
1989
Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II.
Innes J, Brudvig G. Location and magnetic relaxation properties of the stable tyrosine radical in photosystem II. Biochemistry 1989, 28: 1116-25. PMID: 2540815, DOI: 10.1021/bi00429a028.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacterial ProteinsChlorophyllElectron Spin Resonance SpectroscopyFree RadicalsKineticsLight-Harvesting Protein ComplexesMathematicsMicrowavesModels, MolecularModels, TheoreticalMyoglobinPhotosynthetic Reaction Center Complex ProteinsPhotosystem II Protein ComplexPlant ProteinsProtein ConformationRhodobacter sphaeroidesThermodynamicsTyrosineWhalesConceptsMetal ionsPSII membranesPhotosystem IIProtein surfaceMicrowave power saturationReaction centersRaman relaxation mechanismMagnetic relaxation propertiesFree radicalsRelaxation enhancementDipolar relaxation enhancementIonsMembrane surfaceRelaxation propertiesSpin-lattice relaxationComplexesDipolar interactionsRadicalsRhodobacter sphaeroidesProtein structureD2 subunitsPower saturationDy3Relaxation mechanismSurface