2024
Modeling Electrochemical Vacancy Regeneration in Single-Walled Carbon Nanotubes
Jelušić J, Menzel J, Bertrand Q, Crabtree R, Wang H, Brudvig G, Batista V. Modeling Electrochemical Vacancy Regeneration in Single-Walled Carbon Nanotubes. The Journal Of Physical Chemistry Letters 2024, 15: 7788-7792. PMID: 39048317, DOI: 10.1021/acs.jpclett.4c01293.Peer-Reviewed Original ResearchProton-coupled electron transferDensity functional theorySingle-walled carbon nanotubesC-H bondsQuantum mechanics/molecular mechanicsDiverse catalytic reactionsCarbene characterCarbon nanotubesC-HAdjacent carbonWater dissociationElectron transferCatalytic reactionsCatalytic intermediatesFunctional theoryHydrogen atomsKetone groupForce-fieldCarbon atomsHydroxyl groupsElectrochemical regenerationZigzag single-walled carbon nanotubesElectrochemical potentialKetonesVacancy defects
2023
Multielectrode electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering
Kwon G, Kisslinger K, Hwang S, Wright G, Layne B, Zhong H, Pattammattel A, Lynch J, Kim J, Hu G, Brudvig G, Lee W, Nam C. Multielectrode electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering. Journal Of Applied Crystallography 2023, 56: 1392-1402. DOI: 10.1107/s1600576723006933.Peer-Reviewed Original ResearchThin film catalystElectrochemical cellGlassy carbonHigh-energy X-ray scatteringStructural characterizationX-ray scatteringWater oxidation catalystsPorous electrode architectureThree-electrode configurationHigh-energy x-ray scattering techniquesSitu structural characterizationPDF analysisIridium oxide filmsMetal oxide layerPair distribution function techniqueElectrode architectureOxidation catalystX-ray Scattering MeasurementsX-ray scattering techniquesReaction conditionsCatalystElectrochemical potentialAtomic pair distribution function (PDF) techniqueElectrodeDeposition technique