2024
Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II
Liu J, Yang K, Long Z, Armstrong W, Brudvig G, Batista V. Water Ligands Regulate the Redox Leveling Mechanism of the Oxygen-Evolving Complex of the Photosystem II. Journal Of The American Chemical Society 2024, 146: 15986-15999. PMID: 38833517, DOI: 10.1021/jacs.4c02926.Peer-Reviewed Original ResearchProton-coupled electron transferOxygen-evolving complexWater insertionWater ligandsCatalytic cycleMolecular dynamicsO-O bondQuantum mechanics/molecular mechanicsConformational changesFree energy changeLigand environmentElectron transferLigand exchangePhotosystem IIOxygen evolutionWater binding mechanismsEnergy changeLigandBinding mechanismAqueous environmentRedoxWater bindingLigand bindingCatalystIsomerizationPhotochemical Oxidation of Substrate Water Analogs and Halides by Photosystem II
Shin J, Kanyo J, Debus R, Brudvig G. Photochemical Oxidation of Substrate Water Analogs and Halides by Photosystem II. Advanced Energy Materials 2024 DOI: 10.1002/aenm.202401292.Peer-Reviewed Original ResearchWater oxidation catalysisRedox-active cofactorsOxidation catalysisWater oxidationSubstrate photooxidationProtein-pigment complexesRedox chemistryPhotochemical reductionSubstrate waterNative PSIISmall moleculesO 2 evolutionHalidesO-2ChloridePhotooxidationPhotochemical oxidationPSII complexesBound chlorideKinetic profilesPhotosystem IISubstratePutative water channelsCatalystCatalysis
2023
(Invited) Water Oxidation Catalysis with Atomically Defined Active Sites on Nanostructured Materials for Solar Energy Applications
Brudvig G. (Invited) Water Oxidation Catalysis with Atomically Defined Active Sites on Nanostructured Materials for Solar Energy Applications. ECS Meeting Abstracts 2023, MA2023-01: 2149-2149. DOI: 10.1149/ma2023-01372149mtgabs.Peer-Reviewed Original ResearchWater oxidation catalystsMolecular catalystsSolar fuel productionWater oxidationMolecular water oxidation catalystsPhoto-electrochemical water oxidationWater oxidation catalysisNatural photosynthetic systemsPhotoelectrochemical water oxidationMetal oxide surfacesMetal oxide photoanodesFuel productionOxidation catalysisCatalytic performanceOxide photoanodesOxide surfaceNanostructured materialsBioinspired materialsCatalystLimited stabilityActive siteOxide materialsHigh activityPhotosynthetic systemsSolar energy applicationsElectrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex
Liu H, Lant H, Troiano J, Hu G, Mercado B, Crabtree R, Brudvig G. Electrocatalytic, Homogeneous Ammonia Oxidation in Water to Nitrate and Nitrite with a Copper Complex. ECS Meeting Abstracts 2023, MA2023-01: 2691-2691. DOI: 10.1149/ma2023-01552691mtgabs.Peer-Reviewed Original ResearchWater oxidationAmmonia oxidationO bond formationInitial mechanistic studiesMolecular catalystsCopper complexesMetal electrocatalystsFaradaic efficiencyAqueous mediaBond formationHigh selectivityOxidation processN2 productTitle reactionOxidationMechanistic studiesCatalysisComplexesRoom temperatureFriendly productionWaterElectrocatalystsElectrocatalyticNitrateCatalystObservation of Support-Dependent Water Oxidation Kinetics on Molecularly-Derived Heterogeneous Ir-Oxide Catalysts
Zhang H, Liu T, Dulock N, William B, Wang Y, Chen B, Wikar H, Wang D, Brudvig G, Wang D, Waegele M. Observation of Support-Dependent Water Oxidation Kinetics on Molecularly-Derived Heterogeneous Ir-Oxide Catalysts. ECS Meeting Abstracts 2023, MA2023-01: 2154-2154. DOI: 10.1149/ma2023-01372154mtgabs.Peer-Reviewed Original ResearchWater oxidation activityIndium tin oxideActive siteHeterogeneous catalystsOxidation activityHeterogeneous water oxidation catalysisHigh water oxidation activityMost heterogeneous catalystsWater oxidation catalysisWater oxidation catalystsWater oxidation kineticsRate-determining stepOxidation catalysisCeO2 supportSurface chemistryOxidative chargeCatalyst influenceOxidation catalystMolecular structurePhotocatalytic activityCatalystElectronic structureDifferent oxidesTin oxideOxidation kineticsMultielectrode electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering
Kwon G, Kisslinger K, Hwang S, Wright G, Layne B, Zhong H, Pattammattel A, Lynch J, Kim J, Hu G, Brudvig G, Lee W, Nam C. Multielectrode electrochemical cell for in situ structural characterization of amorphous thin‐film catalysts using high‐energy X‐ray scattering. Journal Of Applied Crystallography 2023, 56: 1392-1402. DOI: 10.1107/s1600576723006933.Peer-Reviewed Original ResearchThin film catalystElectrochemical cellGlassy carbonHigh-energy X-ray scatteringStructural characterizationX-ray scatteringWater oxidation catalystsPorous electrode architectureThree-electrode configurationHigh-energy x-ray scattering techniquesSitu structural characterizationPDF analysisIridium oxide filmsMetal oxide layerPair distribution function techniqueElectrode architectureOxidation catalystX-ray Scattering MeasurementsX-ray scattering techniquesReaction conditionsCatalystElectrochemical potentialAtomic pair distribution function (PDF) techniqueElectrodeDeposition techniqueAtomically dispersed Ir catalysts exhibit support-dependent water oxidation kinetics during photocatalysis
Zhang H, Liu T, Dulock N, Williams B, Wang Y, Chen B, Wikar H, Wang D, Brudvig G, Wang D, Waegele M. Atomically dispersed Ir catalysts exhibit support-dependent water oxidation kinetics during photocatalysis. Chemical Science 2023, 14: 6601-6607. PMID: 37350819, PMCID: PMC10283500, DOI: 10.1039/d3sc00603d.Peer-Reviewed Original ResearchWater oxidation activityIndium tin oxideActive siteOxidation activityHeterogeneous water oxidation catalysisHigh water oxidation activityWater oxidation catalysisWater oxidation kineticsOxidation catalysisWater oxidationIr catalystHeterogeneous catalystsDistinct active sitesLight sensitizerPrototypical reactionReaction mechanismDifferent supportsElectron scavengerCatalystTin oxideOxidation kineticsHigh temperatureLow temperatureStudied rangeCatalysisElectrochemical Ammonia Oxidation with Molecular Catalysts
Liu H, Lant H, Cody C, Jelušić J, Crabtree R, Brudvig G. Electrochemical Ammonia Oxidation with Molecular Catalysts. ACS Catalysis 2023, 13: 4675-4682. DOI: 10.1021/acscatal.3c00032.Peer-Reviewed Original ResearchSelective Methane Oxidation by Heterogenized Iridium Catalysts
Li H, Fei M, Troiano J, Ma L, Yan X, Tieu P, Yuan Y, Zhang Y, Liu T, Pan X, Brudvig G, Wang D. Selective Methane Oxidation by Heterogenized Iridium Catalysts. Journal Of The American Chemical Society 2023, 145: 769-773. PMID: 36594824, DOI: 10.1021/jacs.2c09434.Peer-Reviewed Original ResearchConceptsSelective methane oxidationValue-added oxygenatesPrepared catalystIr complexesIr centerOxide supportIridium catalystEasy separationC bondDirect CHImmobilization approachCatalystMethyl migrationOH productionMethane oxidationAcetic acidDirect routeKey stepCHCarbonylationElectrophilicityOxygenatesCarbonylBondsOxidation
2022
Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts
Zhao Y, Dai S, Yang K, Cao S, Materna K, Lant H, Kao L, Feng X, Guo J, Brudvig G, Flytzani-Stephanopoulos M, Batista V, Pan X, Wang D. Highly stable preferential carbon monoxide oxidation by dinuclear heterogeneous catalysts. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 120: e2206850120. PMID: 36577066, PMCID: PMC9910598, DOI: 10.1073/pnas.2206850120.Peer-Reviewed Original Research
2021
Toward understanding the S2-S3 transition in the Kok cycle of Photosystem II: Lessons from Sr-substituted structure
Amin M, Kaur D, Gunner M, Brudvig G. Toward understanding the S2-S3 transition in the Kok cycle of Photosystem II: Lessons from Sr-substituted structure. Inorganic Chemistry Communications 2021, 133: 108890. DOI: 10.1016/j.inoche.2021.108890.Peer-Reviewed Original ResearchDensity functional theoryS3 transitionPhotosystem IIWater oxidation mechanismS2-S3 transitionKok cycleOxidation mechanismContinuum electrostaticsHydrogen fuelFunctional theoryS2 stateSolar energyArtificial systemsCatalystDeprotonationWaterMn4CalculationsElectrostaticsSr2OxygenEnergeticsTransitionFuelStructureOrganometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution
Hu G, Crabtree R, Brudvig G. Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution. Inorganica Chimica Acta 2021, 526: 120507. DOI: 10.1016/j.ica.2021.120507.Peer-Reviewed Original ResearchOrganometallic complexesCoordination complexesCatalyst precursorsOrganometallic ligandsOrganometallic precursorsOxygen evolution catalystsUseful catalyst precursorsBlue solutionPyalk ligandCoordination precursorsChelating ligandHomogeneous catalystsIrOx nanoparticlesActive speciesNanoparticle formationNanoparticle generationOxygen evolutionIsomeric mixtureOxidative activationCore unitLigandsCatalystComplexesActivation processPrecursorsObservation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts
Lang C, Li J, Yang K, Wang Y, He D, Thorne J, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig G, Batista V, Waegele M, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021, 7: 2101-2117. DOI: 10.1016/j.chempr.2021.03.015.Peer-Reviewed Original ResearchWater oxidation mechanismWater oxidation reactionWater nucleophilic attack mechanismCo-based catalystsO bond formationNucleophilic attack mechanismKey elementary stepsHeterogeneous catalystsSalt electrolyteElectrode potentialApplied potentialBond formationLow driving forceO couplingElementary stepsMechanistic switchCatalystHigh driving forceDriving forceReactionAttack mechanismWater activityElectrolyteHereinPotential
2020
Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode
Liu H, Cody C, Jayworth J, Crabtree R, Brudvig G. Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode. ACS Energy Letters 2020, 5: 3195-3202. DOI: 10.1021/acsenergylett.0c01719.Peer-Reviewed Original ResearchMolecular water oxidation catalystsWater splitting photoanodesSolar fuel generationWater oxidation catalystsHybrid photoanodeLong-term stabilityMolecular catalystsFuel generationCharacterization techniquesPhotoanodeStudy of degradationGreat promiseCell consistsCatalystPractical applicationsSemiconductorsDesign strategyStabilityCrucial subjectFuture directionsApplicationsPromiseDegradation
2019
Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions
Beromi M, Brudvig G, Hazari N, Lant H, Mercado B. Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions. Angewandte Chemie 2019, 131: 6155-6159. DOI: 10.1002/ange.201901866.Peer-Reviewed Original ResearchN,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution
Lant H, Michaelos T, Sharninghausen L, Mercado B, Crabtree R, Brudvig G. N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution. European Journal Of Inorganic Chemistry 2019, 2019: 2115-2123. DOI: 10.1002/ejic.201801343.Peer-Reviewed Original ResearchAlkoxide moietyOxidation stateOxygen evolutionHigher Mn oxidation statesCatalytic oxygen evolutionO-pincer ligandMn oxidation statePincer ligandRedox levelingElectrochemical dataLow overpotentialProtonation stateProton lossEPR experimentsMn IIIO intermediateRelated seriesMn–VMn IIMoietyLigandsOverpotentialDicationCatalystCatalysisModification of a pyridine-alkoxide ligand during the synthesis of coordination compounds
Shopov D, Sharninghausen L, Sinha S, Mercado B, Brudvig G, Crabtree R. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds. Inorganica Chimica Acta 2019, 484: 75-78. DOI: 10.1016/j.ica.2018.09.020.Peer-Reviewed Original ResearchPyridine-alkoxide ligandsWater oxidation catalysisHigher oxidation statesCoordination compoundsPincer ligandGeminal methyl groupsCatalytic conditionsOxidation stateOxidation catalystReaction conditionsMinor byproductsAliphatic alkenesMinor productsOxidative conditionsMethyl groupN-oxideLigandsBlue solutionCH groupPincerStructural analoguesSynthesisComplexesCatalystCentral unit
2018
Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst
Rudshteyn B, Fisher K, Lant H, Yang K, Mercado B, Brudvig G, Crabtree R, Batista V. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst. ACS Catalysis 2018, 8: 7952-7960. DOI: 10.1021/acscatal.8b02466.Peer-Reviewed Original ResearchKinetic isotope effectsWater nucleophilic attack mechanismWater oxidation catalystsWater nucleophilic attackD Kinetic Isotope EffectO bond formationUV-visible spectraDensity functional theoryElectrochemical stepWater oxidationElectrochemical analysisTurnover frequencyDerivative complexesBond formationRadical speciesRational designCis formFunctional theoryIsotope effectRate-limiting stepCatalystComplexesAttack mechanismMechanistic findingsDeprotonationCatalysing water oxidation using nature’s metal
Brudvig G. Catalysing water oxidation using nature’s metal. Nature Catalysis 2018, 1: 10-11. DOI: 10.1038/s41929-017-0013-1.Peer-Reviewed Original Research
2017
Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand
Fisher K, Materna K, Mercado B, Crabtree R, Brudvig G. Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand. ACS Catalysis 2017, 7: 3384-3387. DOI: 10.1021/acscatal.7b00494.Peer-Reviewed Original ResearchWater oxidationElectrocatalytic water oxidationPotential electrolysis experimentsWater oxidation electrocatalystsStrong donor characterCatalyst degradationTurnover frequencyElectrolysis experimentsDonor characterCatalytic turnoverBasic conditionsOxidationHarsh conditionsOxidation resistanceElectrocatalystsCatalystLigandsCopperComplexesO2NHEFormationDegradation