2023
Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles
Li F, Grushin K, Coleman J, Pincet F, Rothman J. Diacylglycerol-dependent hexamers of the SNARE-assembling chaperone Munc13-1 cooperatively bind vesicles. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2306086120. PMID: 37883433, PMCID: PMC10623011, DOI: 10.1073/pnas.2306086120.Peer-Reviewed Original Research
2014
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV, Walther TC. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. ELife 2014, 3: e01607. PMID: 24497546, PMCID: PMC3913038, DOI: 10.7554/elife.01607.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 1AnimalsBiological TransportCell LineCoat Protein Complex ICOP-Coated VesiclesDrosophila melanogasterDrosophila ProteinsEndoplasmic ReticulumHumansLipaseLipid DropletsLipolysisMiceNanoparticlesParticle SizePhospholipidsRNA InterferenceSurface TensionTime FactorsTransfectionTriglyceridesConceptsCellular lipid dropletsLipid dropletsProtein machineryProtein targetingUbiquitous organellesVesicle traffickingLD surfaceSpecific proteinsKey enzymeLD morphologyMembrane precursorsMachineryMetabolic energyProteinNeutral lipidsTG storageEnzymeUnclear mechanismsAmount of phospholipidsRecent evidenceOrganellesCOPITraffickingTriacylglycerolsBuds
2013
COPI buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function
Thiam AR, Antonny B, Wang J, Delacotte J, Wilfling F, Walther TC, Beck R, Rothman JE, Pincet F. COPI buds 60-nm lipid droplets from reconstituted water–phospholipid–triacylglyceride interfaces, suggesting a tension clamp function. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 13244-13249. PMID: 23901109, PMCID: PMC3746913, DOI: 10.1073/pnas.1307685110.Peer-Reviewed Original ResearchMeSH KeywordsADP-Ribosylation Factor 1AnimalsCoat Protein Complex IEscherichia coliHumansHydrophobic and Hydrophilic InteractionsLipid BilayersMicroscopy, ElectronPhosphatidylcholinesPhosphatidylethanolaminesPhospholipidsProtein TransportSf9 CellsSpectrometry, FluorescenceSpodopteraSurface TensionTransport VesiclesTriglyceridesWaterConceptsCoat protein complex ILipid dropletsCoat protein complexTransport vesicle formationProtein complex ILipid droplet targetingBud vesiclesCOPI subunitsProtein complexesCoat componentsNeighboring proteinsIntracellular traffickingVesicle formationComplex IClamp functionPossible direct interactionDirect interactionPhospholipid packingUnsuitable targetsProteinBilayer membranesCoatomerMembraneOrganellesProtomers
2006
Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium
Rodriguez N, Cribier S, Pincet F. Transition from long- to short-lived transient pores in giant vesicles in an aqueous medium. Physical Review E 2006, 74: 061902. PMID: 17280091, DOI: 10.1103/physreve.74.061902.Peer-Reviewed Original Research
2002
Energy of Hydrogen Bonds Probed by the Adhesion of Functionalized Lipid Layers
Tareste D, Pincet F, Perez E, Rickling S, Mioskowski C, Lebeau L. Energy of Hydrogen Bonds Probed by the Adhesion of Functionalized Lipid Layers. Biophysical Journal 2002, 83: 3675-3681. PMID: 12496134, PMCID: PMC1302442, DOI: 10.1016/s0006-3495(02)75367-8.Peer-Reviewed Original ResearchConceptsHydrogen bondsIntramolecular hydrogen bondsHydrogen-bonding groupsSurface force apparatusSingle hydrogen bondHydrogen-bonding partsMonolayer of lipidsDifferent energetic contributionsForce apparatusHydrophobic interactionsInteraction energyBondsKcal/Lipid layerEnergetic contributionsTheoretical studyAdhesion energyProtein systemsBond partProtein foldingProtein stabilizationHeadgroupsWaterSurfaceComplex structure