1993
Renal mechanism of trimethoprim-induced hyperkalemia.
Velázquez H, Perazella MA, Wright FS, Ellison DH. Renal mechanism of trimethoprim-induced hyperkalemia. Annals Of Internal Medicine 1993, 119: 296-301. PMID: 8328738, DOI: 10.7326/0003-4819-119-4-199308150-00008.Peer-Reviewed Original ResearchConceptsRenal potassium excretionPotassium excretionMammalian distal nephronDistal tubulesTrimethoprim therapyPotassium secretionDistal nephronMale Sprague-Dawley ratsLumen-negative transepithelial voltageTransepithelial voltageNormal adrenocortical functionSeverity of hyperkalemiaTranstubular potassium gradientUrine electrolyte levelsSodium channelsRenal sodium excretionGlomerular filtration rateSerum potassium levelsSerum potassium concentrationNormal rat chowSprague-Dawley ratsRenal distal tubulesPotassium concentrationKidney distal tubuleMembrane sodium channels
1992
Active potassium absorption by the renal distal tubule
Okusa MD, Unwin RJ, Velazquez H, Giebisch G, Wright FS. Active potassium absorption by the renal distal tubule. American Journal Of Physiology 1992, 262: f488-f493. PMID: 1532693, DOI: 10.1152/ajprenal.1992.262.3.f488.Peer-Reviewed Original ResearchConceptsDistal tubulesPotassium-deficient ratsLumen-negative transepithelial voltageLow potassium dietSprague-Dawley ratsRenal distal tubulesRat distal tubulesGroups of ratsLate distal tubuleSCH 28080Vivo microperfusion techniquesNet potassium fluxActive potassium absorptionK-adenosinetriphosphataseRegular dietPotassium absorptionNormal ratsDistal nephronPotassium depletionRatsSmall hyperpolarizationMicroperfusion techniquePotassium homeostasisTransepithelial voltageActive transport mechanism