2016
Tissue engineering advances in spine surgery
Makhni MC, Caldwell JM, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY. Tissue engineering advances in spine surgery. Regenerative Medicine 2016, 11: 211-222. PMID: 26877156, DOI: 10.2217/rme.16.3.Peer-Reviewed Original ResearchConceptsTissue-engineered bone graftsBiomimetic 3D scaffoldsTissue-engineered constructsBone graftTissue engineering advancesDonor site painNanoscale technologiesSite painEngineering advancesHematoma formationVascular injurySpine surgeryBone graftingBone allograftSurgery applicationsMesenchymal stem cellsTissue graftViable boneIntervertebral disc regeneration strategiesHuman tissue graftsGraftGold standardOsteoinductive capabilityDisease transmissionOwn disadvantages
2015
Optimal internal fixation of anatomically shaped synthetic bone grafts for massive segmental defects of long bones
Vorys GC, Bai H, Chandhanayingyong C, Lee CH, Compton JT, Caldwell JM, Gardner TR, Mao JJ, Lee FY. Optimal internal fixation of anatomically shaped synthetic bone grafts for massive segmental defects of long bones. Clinical Biomechanics 2015, 30: 1114-1118. PMID: 26386637, PMCID: PMC9004608, DOI: 10.1016/j.clinbiomech.2015.08.016.Peer-Reviewed Original ResearchConceptsTorsional stiffnessHydroxyapatite composite scaffoldsCyclic torsional testsNon-locking fixationMassive segmental defectsTissue engineering strategiesLarge segmental bone defectsComposite scaffoldsLoading cyclesTorque controlSynthetic bone graftAxial stiffnessAngular rotationAxial compressionTorsional testsNon-destructive mannerGeometry representativeOptimal screw fixationSegmental bone defectsSuch scaffoldsTorque levelsStiffnessBiomechanical testingHuman tibiaEngineering strategiesHarnessing endogenous stem/progenitor cells for tendon regeneration
Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G, Mao JJ. Harnessing endogenous stem/progenitor cells for tendon regeneration. Journal Of Clinical Investigation 2015, 125: 2690-2701. PMID: 26053662, PMCID: PMC4563693, DOI: 10.1172/jci81589.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsCD146 AntigenCell DifferentiationCell ProliferationColony-Forming Units AssayConnective Tissue Growth FactorFocal Adhesion Kinase 1MAP Kinase Signaling SystemMultipotent Stem CellsRatsRats, Sprague-DawleyRegenerationTendon InjuriesTendonsTissue EngineeringWound HealingConceptsStem/progenitor cellsEndogenous stem/progenitor cellsProgenitor cellsCell transplantationTendon regenerationStem cell markers CD146Stem cell-based strategiesFAK/ERK1/2Cell-based strategiesRat modelTendon healingFunctional restorationNormal levelsMultilineage differentiation abilityClonogenic capacityCD146Tendon cellsSiRNA knockdownTransplantationVivo manipulation
2013
Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study
Amorosa L, Lee C, Aydemir, Nizami S, Hsu A, Patel N, Gardner T, Navalgund A, Kim DG, Park S, Mao J, Lee F. Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study. International Journal Of Nanomedicine 2013, Volume 8: 1637-1643. PMID: 23637532, PMCID: PMC3639117, DOI: 10.2147/ijn.s42855.Peer-Reviewed Original ResearchConceptsAddition of hMSCsPolymer-based scaffoldsLoad-bearing characteristicsPhysiologic cyclic loadingPhase angleCritical-sized segmental defectsScaffold alone groupViscous stiffnessCyclic loadingMechanical propertiesFemoral defect modelSized segmental defectsRat femoral defect modelHuman mesenchymal stem cellsMechanical simulationsScaffold groupDifferent biomechanical characteristicsEnhanced bone formationHigh phase anglesDefect modelBiomechanical characteristicsExperimental studyHost boneStiffnessDefect repair