2021
TCL-194: Change in Lymphocyte Count as a Predictor of Response to Mogamulizumab in Patients with Mycosis Fungoides or Sézary Syndrome
Foss F, Ito T, Dwyer K, Herr F. TCL-194: Change in Lymphocyte Count as a Predictor of Response to Mogamulizumab in Patients with Mycosis Fungoides or Sézary Syndrome. Clinical Lymphoma Myeloma & Leukemia 2021, 21: s412. DOI: 10.1016/s2152-2650(21)01926-1.Peer-Reviewed Original ResearchGrade 0Blood involvementSézary syndromeMycosis fungoidesB2 patientsLymphocyte countClinical responseSézary cellsGrade 1Refractory mycosis fungoidesSeverity of lymphopeniaAbsolute lymphocyte countSkin responseT lymphocyte populationsPredictors of responseIncidence of infectionAnti-CCR4 antibodyMechanism of actionAbsolute lymphocyteAdvanced diseaseClinical outcomesLymphocyte populationsInfections/infestationsMogamulizumabT cells
2020
JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL
Yumeen S, Mirza FN, Lewis JM, King ALO, Kim SR, Carlson KR, Umlauf SR, Surovtseva YV, Foss FM, Girardi M. JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL. Blood Advances 2020, 4: 2213-2226. PMID: 32437546, PMCID: PMC7252559, DOI: 10.1182/bloodadvances.2020001756.Peer-Reviewed Original ResearchConceptsCutaneous T-cell lymphomaJAK inhibitionCTCL cellsMalignant cutaneous T-cell lymphomasAdvanced cutaneous T-cell lymphomaTreatment of CTCLAvailable systemic treatment optionsSkin-homing T lymphocytesSystemic treatment optionsT-cell lymphomaCTCL cell linesHistone deacetylase inhibitionGeneralized cytotoxic effectExpression of Bcl2Advanced diseaseSuch patientsPeripheral bloodTreatment optionsJAK/STAT pathwayT lymphocytesPreclinical assessmentTherapeutic targetStrong potentiationExtrinsic apoptosis pathwayDeacetylase inhibition
2019
A drug safety evaluation of mogamulizumab for the treatment of cutaneous T-Cell lymphoma
Afifi S, Mohamed S, Zhao J, Foss F. A drug safety evaluation of mogamulizumab for the treatment of cutaneous T-Cell lymphoma. Expert Opinion On Drug Safety 2019, 18: 769-776. PMID: 31303060, DOI: 10.1080/14740338.2019.1643837.Peer-Reviewed Original ResearchConceptsCutaneous T-cell lymphomaT-cell lymphomaTreatment optionsTreatment of CTCLSkin-homing T cellsRare non-Hodgkin lymphomaSystemic treatment optionsMF/SSNew treatment optionsNon-Hodgkin lymphomaDrug Administration approvalDrug safety evaluationLow response rateAdvanced diseaseAdult patientsPrior linesAdministration approvalT cellsMogamulizumabResponse rateAgent efficacyPatientsRecent FoodLymphomaDisease states
2015
Romidepsin for the Treatment of Peripheral T‐Cell Lymphoma
Iyer SP, Foss FF. Romidepsin for the Treatment of Peripheral T‐Cell Lymphoma. The Oncologist 2015, 20: 1084-1091. PMID: 26099743, PMCID: PMC4571813, DOI: 10.1634/theoncologist.2015-0043.Peer-Reviewed Original ResearchConceptsPeripheral T-cell lymphomaRefractory peripheral T-cell lymphomaT-cell lymphomaHistone deacetylase inhibitorsPrior therapySpecialty centersTherapeutic approachesExpert hematopathologistsTreatment of PTCLDeacetylase inhibitorsPivotal phase II studiesCutaneous T-cell lymphomaPrior systemic therapyCommon adverse eventsObjective response ratePhase II studyFirst-line treatmentTreatment of patientsNon-Hodgkin lymphomaDifficulty of diagnosisAsthenic conditionsHeavy pretreatmentInduction chemotherapyAdvanced diseaseAdverse events