2023
Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice
Stevens H, Scuderi S, Collica S, Tomasi S, Horvath T, Vaccarino F. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Translational Psychiatry 2023, 13: 89. PMID: 36906620, PMCID: PMC10008554, DOI: 10.1038/s41398-023-02372-y.Peer-Reviewed Original ResearchConceptsFibroblast growth factor receptor 2Anxiety-like behaviorAttention deficit hyperactivity disorderAstroglial cellsGrowth factor receptor 2Reduced anxiety-like behaviorGlia-neuron interactionsAstroglial cell functionEarly postnatal periodFactor receptor 2Early postnatal lossPostnatal mouse brainWeeks of ageDeficit hyperactivity disorderGlial cellsGlutamine synthetase expressionBehavioral deficitsPostnatal periodReceptor 2Floxed miceHGFAP-CreMouse brainNeonatal lossPostnatal astrogliaPostnatal loss
2021
Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Zhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier AS, Mariani J, Petrov D, Barres BA, Duncan L, Abyzov A, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience 2021, 24: 186-196. PMID: 33432196, PMCID: PMC8806165, DOI: 10.1038/s41593-020-00767-4.Peer-Reviewed Original ResearchMeSH KeywordsAdaptor Proteins, Signal TransducingAdultCation Transport ProteinsEmbryonic DevelopmentFemaleGenomeHeLa CellsHigh-Throughput Nucleotide SequencingHumansLong Interspersed Nucleotide ElementsMachine LearningMental DisordersMutagenesis, InsertionalNeurogliaNeuronsPregnancyRetroelementsSchizophreniaConceptsBrain developmentPossible pathological effectsAnatomical distributionBilateral distributionHuman neuronsNervous systemHuman nervous systemNeuropsychiatric diseasesNeuropsychiatric disordersGliaPathological effectsNeuronsSomatic L1 insertionsWhole-genome sequencingHuman brainSomatic retrotransposition
2014
Neurobiology of premature brain injury
Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V. Neurobiology of premature brain injury. Nature Neuroscience 2014, 17: 341-346. PMID: 24569830, PMCID: PMC4106480, DOI: 10.1038/nn.3604.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2012
Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice
Salmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM. Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice. Journal Of Neuroscience 2012, 32: 8930-8939. PMID: 22745493, PMCID: PMC3399175, DOI: 10.1523/jneurosci.1398-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnimals, NewbornBromodeoxyuridineCell CountCell DifferentiationCognition DisordersDeoxyuridineDisease Models, AnimalEnvironmentEstrogen AntagonistsFemaleGene Expression Regulation, DevelopmentalGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsHumansHypoxiaIdoxuridineKi-67 AntigenMaleMaze LearningMiceMice, Inbred C57BLMice, TransgenicNerve Tissue ProteinsNeurogenesisNeurogliaReceptors, EstrogenStem CellsTamoxifenConceptsHypoxic injuryBrain injuryAstroglial cellsChronic hypoxic injuryDevelopmental brain injuryLow birth weightCell poolEnvironmental enrichmentAdult brain injuryAbnormal lung developmentStem cell poolPerinatal hypoxic injuryFate-mapping modelsSocio-demographic factorsNeurobiological recoveryHippocampal neurogenesisVLBW cohortPremature childrenBirth weightCardiovascular abnormalitiesJuvenile miceAnimal modelsLung developmentInjuryCognitive deficits
2006
Midline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
2004
Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex
Schwartz ML, Vaccarino F, Chacon M, Yan WL, Ment LR, Stewart WB. Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex. Seminars In Perinatology 2004, 28: 379-388. PMID: 15693394, DOI: 10.1053/j.semperi.2004.10.009.Peer-Reviewed Original ResearchConceptsDays of hypoxiaPreterm birth resultsNeuronal sizeBirth resultsHypoxic exposureCell numberChronic neonatal hypoxiaChronic sublethal hypoxiaNeonatal rodent modelPerinatal period altersRat cerebral cortexNeuronal cell numberBcl-2Glial cell numbersNormoxic environmentPostnatal day 3Cortical cell numberSignificant neurodevelopmental disabilitiesWestern blot analysisPreterm birthNeonatal hypoxiaNormoxic exposureCerebral cortexChronic hypoxiaControl pupsFibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse
Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM. Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse. Journal Of Neuroscience 2004, 24: 6057-6069. PMID: 15240797, PMCID: PMC6729672, DOI: 10.1523/jneurosci.1140-04.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationCell CountCell LineageCell ProliferationCells, CulturedHeredodegenerative Disorders, Nervous SystemHippocampusHumansIn Situ HybridizationLateral VentriclesMiceMice, TransgenicMutagenesis, Site-DirectedNeurogliaNeuronsPyramidal CellsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorRNA, MessengerStem CellsTransgenesConceptsHippocampal ventricular zonesDentate gyrusGrowth factor receptor 1Fibroblast growth factor receptor 1Factor receptor 1Ventricular zoneNeural stem cellsPyramidal neuronsHippocampal growthProgenitor cellsGranule cellsReceptor 1Glial fibrillary acidic protein promoterHuman glial fibrillary acidic protein promoterEmbryonic dorsal telencephalonRadial glial-like cellsRadial glial progenitor cellsHippocampal dentate gyrusParvalbumin-containing interneuronsDG granule cellsHippocampal pyramidal neuronsStem cellsHippocampal progenitor cellsRole of FGFR1Glial progenitor cellsInjury and repair in developing brain
Vaccarino FM, Ment LR. Injury and repair in developing brain. Archives Of Disease In Childhood - Fetal And Neonatal Edition 2004, 89: f190. PMID: 15102716, PMCID: PMC1721670, DOI: 10.1136/adc.2003.043661.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsFibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone
Zheng W, Nowakowski RS, Vaccarino FM. Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone. Developmental Neuroscience 2004, 26: 181-196. PMID: 15711059, DOI: 10.1159/000082136.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBiomarkersBrainCell Cycle ProteinsCell DifferentiationCell DivisionCell LineageCell ProliferationCerebral CortexDown-RegulationImmunohistochemistryLateral VentriclesMiceMice, KnockoutNeurogliaNeuronsOlfactory BulbReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorStem CellsConceptsStem cell poolNeural stem cellsFgf2 knockout miceSlower cell cycle kineticsProgenitor cell populationsSubventricular zoneCell poolNeural stem cell poolGene productsProgenitor populationsFibroblast growth factor-2Olfactory bulbKnockout miceCell cycleOlfactory bulb neurogenesisMolecular markersSmaller olfactory bulbsGrowth factor 2Brain subventricular zoneAnterior subventricular zoneReceptor proteinGlial fibrillary acidic proteinCell cycle kineticsStem cellsFibrillary acidic protein
2002
Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone
Ganat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 2002, 112: 977-991. PMID: 12088755, DOI: 10.1016/s0306-4522(02)00060-x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBlotting, WesternCerebral CortexCerebral VentriclesEnzyme-Linked Immunosorbent AssayEpendymaFibroblast Growth Factor 1Fibroblast Growth Factor 2HypoxiaImmunohistochemistryNeurogliaRatsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2Receptors, Fibroblast Growth FactorRegenerationUp-RegulationConceptsRadial glial cellsRadial gliaChronic hypoxiaGlial cellsFibroblast growth factor 1Periventricular regionBrain lipid binding proteinMajor receptorChronic hypoxic damageGlial fibrillary acidic proteinHypoxia/ischemiaSub-ventricular zoneImmature glial cellsFibrillary acidic proteinGrowth factor-1Ependymal zoneChronic hypoxemiaCerebral cortexHypoxic damageNeurotrophin familyPerinatal brainFGF receptor 1Rat pupsPostnatal weekGlial phenotype
1995
Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex
Vaccarino F, Schwartz M, Hartigan D, Leckman J. Basic Fibroblast Growth Factor Increases the Number of Excitatory Neurons Containing Glutamate in the Cerebral Cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.Peer-Reviewed Original ResearchConceptsBasic fibroblast growth factorNerve growth factorGlutamate-containing neuronsCerebral cortexFibroblast growth factorGrowth factorAspartate-containing neuronsDifferent neurotransmitter phenotypesNumber of GABARatio of glutamateStem cellsNeurotransmitter phenotypeExcitatory neuronsInhibitory neuronsRat telencephalonVentricular zoneBFGF mRNAGABANeuronsCortexGlutamateDiffusible factorsThreefold increaseCellsFactors
1993
Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex
Vaccarino FM, Hayward MD, Le HN, Hartigan DJ, Duman RS, Nestler EJ. Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex. Brain Research 1993, 19: 76-82. PMID: 8103187, DOI: 10.1016/0169-328x(93)90151-e.Peer-Reviewed Original ResearchMeSH Keywords2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepineAnimalsAnimals, NewbornBucladesineCells, CulturedCerebral CortexColforsinCyclic AMPDNA-Binding ProteinsDopamine AgentsEarly Growth Response Protein 1ErgolinesGene Expression RegulationGenes, fosGenes, junGlutamatesGlutamic AcidImmediate-Early ProteinsImmunohistochemistryKineticsNeurogliaNeuronsQuinpiroleRatsRNA, MessengerSecond Messenger SystemsTranscription FactorsVasoactive Intestinal PeptideConceptsVasoactive intestinal peptideRat cerebral cortexCerebral cortexExcitatory amino acid receptor antagonistsDibutyryl cAMPAmino acid receptor antagonistsPrimary culturesC-fosDihydropyridine-sensitive calcium channelsAcid receptor antagonistsIEG inductionCalcium-free mediumCAMP second messenger pathwayIEGs c-fosSKF 38393Immediate-early gene transcription factorsIntestinal peptideReceptor antagonistReceptor agonistSecond messenger pathwaysCalcium channelsDifferentiated neuronsBrief stimulationImmediate early genesIEG expression