2020
Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity
Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, Duman RS, Williams K, Swedo S, Pittenger C. Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. American Journal Of Psychiatry 2020, 178: 48-64. PMID: 32539528, PMCID: PMC8573771, DOI: 10.1176/appi.ajp.2020.19070698.Peer-Reviewed Original ResearchConceptsStriatal cholinergic interneuronsCholinergic interneuronsMouse brain slicesObsessive-compulsive disorderControl subjectsBrain slicesPediatric autoimmune neuropsychiatric disordersIntravenous immunoglobulin treatmentAutoimmune neuropsychiatric disordersAcute mouse brain slicesParvalbumin-expressing GABAergic interneuronsPediatric obsessive-compulsive disorderBrain antigensImmunoglobulin treatmentBaseline serumStreptococcal infectionCritical cellular targetsSymptom improvementGABAergic interneuronsInduced autoimmunityIgG antibodiesMouse slicesIndependent cohortBehavioral pathologyNeuron types
2015
Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome
Xu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, Duman RS, Vaccarino FM, DiLeone RJ, Pittenger C. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 893-898. PMID: 25561540, PMCID: PMC4311862, DOI: 10.1073/pnas.1419533112.Peer-Reviewed Original ResearchConceptsTourette syndromeCholinergic interneuronsDorsolateral striatumSensorimotor gatingD-amphetamine challengeLarge cholinergic interneuronsSpecific cell ablationInterneuron deficitsStriatal interneuronsAcute administrationGABAergic markersDopaminergic drugsAvailable treatmentsPostmortem studiesPrepulse inhibitionTic disordersSevere diseaseHuman putamenMotor coordinationInterneuronsTargeted ablationSevere endStriatumAcute stressGilles de
2014
Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin
Smith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin. PLOS ONE 2014, 9: e103696. PMID: 25116473, PMCID: PMC4130531, DOI: 10.1371/journal.pone.0103696.Peer-Reviewed Original ResearchConceptsGanglionic eminenceSoma sizeCortical interneuronsAstrocytes of miceCortex of adultCortical GABAergic neuronsParvalbumin-positive cortical interneuronsRadial glial cellsSmaller soma sizeMedial ganglionic eminenceFibroblast growth factorDeficient astrocytesLocomotor hyperactivityGABAergic cellsGABAergic neuronsInterneuron maturationGlial cellsCortical astrocytesPostnatal periodAdult CNSPostnatal brainInterneuron markersInterneuronsImmunopositive interneuronsAstrocytes
2013
Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse Forebrain
Komitova M, Xenos D, Salmaso N, Tran KM, Brand T, Schwartz ML, Ment L, Vaccarino FM. Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse Forebrain. Journal Of Neuroscience 2013, 33: 13375-13387. PMID: 23946395, PMCID: PMC3742925, DOI: 10.1523/jneurosci.5286-12.2013.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell Adhesion Molecules, NeuronalCerebral CortexChromatography, High Pressure LiquidDisease Models, AnimalExtracellular Matrix ProteinsGene Knock-In TechniquesHousing, AnimalHypoxiaImmunohistochemistryInterneuronsMiceMice, Inbred C57BLMice, TransgenicNerve Tissue ProteinsParvalbuminsProsencephalonReelin ProteinSerine EndopeptidasesSomatostatinConceptsCortical interneuronsNormoxic controlsMarker expressionPostnatal cortical developmentVasoactive intestinal peptidePostnatal day 3Central nervous systemTotal GABA contentImpact of hypoxicPostnatal mouse forebrainEnvironmental enrichmentIntestinal peptideGABAergic interneuronsFrontal neocortexInhibitory interneuronsCortical developmentMouse modelReelin expressionInterneuron numbersNervous systemDay 3Cognitive impairmentInterneuronsHousing miceRLN expression
2012
Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression
Jablonska B, Scafidi J, Aguirre A, Vaccarino F, Nguyen V, Borok E, Horvath TL, Rowitch DH, Gallo V. Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression. Journal Of Neuroscience 2012, 32: 14775-14793. PMID: 23077062, PMCID: PMC3517297, DOI: 10.1523/jneurosci.2060-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornCell DifferentiationCells, CulturedCyclin-Dependent Kinase Inhibitor p27Forkhead Box Protein O1Forkhead Transcription FactorsGene Expression Regulation, DevelopmentalHumansHypoxia, BrainInfantInfant, NewbornMiceMice, 129 StrainMice, Inbred C57BLMice, KnockoutMice, TransgenicNerve RegenerationOligodendrogliaConceptsDiffuse white matter injuryNeonatal hypoxiaOligodendrocyte regenerationOligodendrocyte progenitor cell proliferationWhite matter injuryWhite matter lesionsPermanent neurodevelopmental disabilityCritical developmental time windowWhite matter developmentOverexpression of FoxO1Preterm infantsProgenitor cell proliferationDevelopmental time windowMatter lesionsOligodendrocyte deathAbnormal myelinationNeurodevelopmental disabilitiesMouse modelBiphasic effectP27Kip1 expressionNull miceOligodendrogenesisHypoxiaOligodendrocyte differentiationOligodendrocyte developmentEnvironmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice
Salmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM. Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice. Journal Of Neuroscience 2012, 32: 8930-8939. PMID: 22745493, PMCID: PMC3399175, DOI: 10.1523/jneurosci.1398-12.2012.Peer-Reviewed Original ResearchMeSH KeywordsAnalysis of VarianceAnimalsAnimals, NewbornBromodeoxyuridineCell CountCell DifferentiationCognition DisordersDeoxyuridineDisease Models, AnimalEnvironmentEstrogen AntagonistsFemaleGene Expression Regulation, DevelopmentalGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsHumansHypoxiaIdoxuridineKi-67 AntigenMaleMaze LearningMiceMice, Inbred C57BLMice, TransgenicNerve Tissue ProteinsNeurogenesisNeurogliaReceptors, EstrogenStem CellsTamoxifenConceptsHypoxic injuryBrain injuryAstroglial cellsChronic hypoxic injuryDevelopmental brain injuryLow birth weightCell poolEnvironmental enrichmentAdult brain injuryAbnormal lung developmentStem cell poolPerinatal hypoxic injuryFate-mapping modelsSocio-demographic factorsNeurobiological recoveryHippocampal neurogenesisVLBW cohortPremature childrenBirth weightCardiovascular abnormalitiesJuvenile miceAnimal modelsLung developmentInjuryCognitive deficits
2011
FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis
Rash BG, Lim HD, Breunig JJ, Vaccarino FM. FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis. Journal Of Neuroscience 2011, 31: 15604-15617. PMID: 22031906, PMCID: PMC3235689, DOI: 10.1523/jneurosci.4439-11.2011.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsBrainBromodeoxyuridineCaspase 3Cell CountCell DifferentiationCells, CulturedCerebral CortexDNA-Binding ProteinsElectroporationEmbryo, MammalianEye ProteinsFatty Acid-Binding Protein 7Fatty Acid-Binding ProteinsFibroblast Growth FactorsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsHomeodomain ProteinsKi-67 AntigenMiceMice, TransgenicMutationNerve Tissue ProteinsNeurogenesisNeuronsPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, Fibroblast Growth FactorReceptors, NotchRepressor ProteinsSignal TransductionStem CellsT-Box Domain ProteinsTranscription FactorsConceptsCortical neurogenesisCortical surface area expansionCortical surface expansionCortical surface areaGrowth factor receptorEmbryonic day 12.5Fibroblast growth factor receptorFGFR mutantsNormal miceCortical layer structureCortical developmentNeurogenic stagesDominant negative FGFRLoss of functionRadial progenitorsNeurogenesisNotch pathway genesSevere deficitsFactor receptorDay 12.5Notch pathwayMiceSimultaneous activationGreater proportionFGFR activityCortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury
Bi B, Salmaso N, Komitova M, Simonini MV, Silbereis J, Cheng E, Kim J, Luft S, Ment LR, Horvath TL, Schwartz ML, Vaccarino FM. Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury. Journal Of Neuroscience 2011, 31: 9205-9221. PMID: 21697371, PMCID: PMC3142780, DOI: 10.1523/jneurosci.0518-11.2011.Peer-Reviewed Original ResearchConceptsGlial fibrillary acidic protein-positive cellsCortical excitatory neuronsProtein-positive cellsPerinatal hypoxic injuryPostnatal hypoxiaGenetic fate mappingCortical astrogliaPremature childrenHypoxic injuryBrain injuryNew neuronsPreterm childrenNeurogenic nicheCognitive recoveryExcitatory neuronsGenerate neuronsNeuronal fateNeuronsHypoxiaCortical parenchymaInjuryParenchymaFate mappingCellsChildren
2010
Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex
Guo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D. Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex. Journal Of Neuroscience 2010, 30: 12036-12049. PMID: 20826667, PMCID: PMC2940828, DOI: 10.1523/jneurosci.1360-10.2010.Peer-Reviewed Original ResearchMeSH KeywordsAdult Stem CellsAnimalsAntigensAntineoplastic Agents, HormonalBromodeoxyuridineCell CountCell DifferentiationCerebral CortexDoublecortin Domain ProteinsDrug Administration ScheduleEye ProteinsGene Expression RegulationGreen Fluorescent ProteinsHomeodomain ProteinsMiceMice, Inbred C57BLMice, TransgenicMicrotubule-Associated ProteinsMyelin Proteolipid ProteinNerve Tissue ProteinsNeuronsNeuropeptidesOligodendrogliaPaired Box Transcription FactorsPAX6 Transcription FactorProteoglycansPyramidal CellsReceptor, Platelet-Derived Growth Factor alphaReceptors, N-Methyl-D-AspartateRepressor ProteinsSOXB1 Transcription FactorsTamoxifenTime FactorsConceptsOligodendroglial progenitor cellsPyramidal glutamatergic neuronsPiriform cortexAdult piriform cortexGlutamatergic neuronsCortical glutamatergic neuronsProgenitor cellsNeural stem cell markersCortical neuronal networksStem cell markersTranscription factor characteristicImmature neuronsCerebral cortexPyramidal neuronsCell markersCortexNeuronsCre-loxP recombination systemNeuronal networksLines of evidenceMarkersLow levelsCellsPrevious studiesDoublecortinAstroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates
Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular And Cellular Neuroscience 2010, 44: 362-373. PMID: 20470892, PMCID: PMC2900521, DOI: 10.1016/j.mcn.2010.05.001.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBasic Helix-Loop-Helix Transcription FactorsBeta-GalactosidaseCell LineageCerebellumGenes, ReporterGlial Fibrillary Acidic ProteinGreen Fluorescent ProteinsIntegrasesMiceMice, Inbred C57BLMice, TransgenicNeurogenesisNeuronsPromoter Regions, GeneticStem CellsTime FactorsConceptsExternal granule cell layerGranule cell precursorsInternal granule cell layerGranule cell layerGranule cellsRhombic lipAstroglial cellsProtein expression profilesGlial fibrillary acidic protein promoterCerebellar granule cell precursorsHuman glial fibrillary acidic protein promoterEmbryonic rhombic lipInducible Cre recombinaseNeuronal progenitor cellsReporter proteinFirst postnatal weekNeural stem cell markersLate embryogenesisCellular plasticityImmature granule cellsEarly postnatal developmentCell layerReporter geneCerebellar granule neuronsStem cell markersFgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits
Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM. Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits. Journal Of Neuroscience 2010, 30: 5590-5602. PMID: 20410112, PMCID: PMC2868832, DOI: 10.1523/jneurosci.5837-09.2010.Peer-Reviewed Original ResearchConceptsMedial prefrontal cortexCerebral cortexFibroblast growth factor receptorCKO miceExcitatory neuronsPrefrontal cortexCortical neuron developmentEntire cerebral cortexRadial glial cellsSpecific fibroblast growth factor receptorsGrowth factor receptorGABAergic neuronsLimbic circuitsCortical neuronsGlial cellsSubcortical stationsBed nucleusCortical developmentLimbic systemStria terminalisSynaptic terminalsSecondary decreaseNeuronal precursorsVentricular zoneNeuron development
2009
Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia
Fagel DM, Ganat Y, Cheng E, Silbereis J, Ohkubo Y, Ment LR, Vaccarino FM. Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia. Journal Of Neuroscience 2009, 29: 1202-1211. PMID: 19176828, PMCID: PMC2768410, DOI: 10.1523/jneurosci.4516-08.2009.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornBromodeoxyuridineCell ProliferationCerebral CortexCreatinineDNA-Binding ProteinsGlial Fibrillary Acidic ProteinHypoxiaMiceMice, Inbred C57BLMice, TransgenicNerve RegenerationNeurogenesisNeuronsOlfactory BulbParvalbuminsPhosphopyruvate HydrataseReceptor, Fibroblast Growth Factor, Type 1T-Box Domain ProteinsConceptsWild-type miceCortical neuronsOlfactory bulbSubventricular zoneChronic postnatal hypoxiaNeonatal hypoxic injuryPersistent behavioral deficitsExcitatory cortical neuronsSVZ cell proliferationCell proliferationPostnatal day 3Receptor 1 geneNormoxic miceOB neurogenesisReactive neurogenesisPerinatal hypoxiaPostnatal hypoxiaNeuronal recoveryFibroblast growth factor receptor 1 (FGFR1) geneHypoxic miceChronic hypoxiaGABAergic interneuronsHypoxic injuryResidual deficitsCortical regeneration
2006
Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo
Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM. Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo. Journal Of Neuroscience 2006, 26: 8609-8621. PMID: 16914687, PMCID: PMC6674357, DOI: 10.1523/jneurosci.2532-06.2006.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAnimals, NewbornAstrocytesBrainCell DifferentiationCell LineageCerebral VentriclesDoublecortin ProteinFemaleGlial Fibrillary Acidic ProteinHumansIntegrasesMaleMiceMice, TransgenicNeuronsOlfactory BulbOligodendrogliaPromoter Regions, GeneticRecombination, GeneticStem CellsTransgenesConceptsDentate gyrusHuman GFAP promoterCerebral cortexAstroglial cellsSubventricular zoneOlfactory bulbPostnatal brainNeural progenitor/stem cellsPostnatal day 5First postnatal weekProgenitor/stem cellsStem cellsInducible Cre recombinaseNeural stem cellsGenetic fate mappingMature neuronsPostnatal weekCNS regionsWhite matterDay 5GFAP promoterNeural precursorsCortexNeuronsCre recombinaseMidline radial glia translocation and corpus callosum formation require FGF signaling
Smith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAstrocytesCell MovementCell ShapeCerebral CortexCorpus CallosumDown-RegulationFemaleFibroblast Growth Factor 8Fibroblast Growth FactorsGrowth ConesMaleMiceMice, KnockoutMice, TransgenicNeurogliaReceptor, Fibroblast Growth Factor, Type 1Receptor, Fibroblast Growth Factor, Type 2RNA InterferenceSignal TransductionConceptsRadial glial cellsGlial cellsSomal translocationRadial gliaCorpus callosum formationReceptor 1 geneCallosal dysgenesisCerebral cortexFibroblast growth factor receptor 1 (FGFR1) geneIndusium griseumDorsomedial cortexDorsolateral cortexKnockout miceCortexAstrogliaApical endfeetFGFR1 geneAstrocytesGliaAxon guidanceDorsal midlinePrecise targetingCellsUnexpected roleFGF
2005
Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain
Vernay B, Koch M, Vaccarino F, Briscoe J, Simeone A, Kageyama R, Ang SL. Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal Of Neuroscience 2005, 25: 4856-4867. PMID: 15888661, PMCID: PMC6724764, DOI: 10.1523/jneurosci.5158-04.2005.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornBasic Helix-Loop-Helix Transcription FactorsBody PatterningBromodeoxyuridineCell CountCell DifferentiationDopamineEmbryo, MammalianEmbryonic InductionFibroblast Growth Factor 8Gene Expression Regulation, DevelopmentalHomeobox Protein Nkx-2.2Homeodomain ProteinsImmunohistochemistryIn Situ HybridizationIn Situ Nick-End LabelingIntermediate Filament ProteinsIntracellular Signaling Peptides and ProteinsKruppel-Like Transcription FactorsMembrane ProteinsMesencephalonMiceMice, TransgenicNerve Tissue ProteinsNestinNeuronsOrganizers, EmbryonicOtx Transcription FactorsPatched ReceptorsReceptors, Cell SurfaceSerotoninTranscription FactorsWnt1 ProteinZebrafish ProteinsZinc Finger Protein GLI1ConceptsMid-hindbrain organizerFunction of Otx2Neuronal subtype identityTranscription factor Otx2Rostral brain developmentEmbryonic day 10.5Cre/loxP systemRole of Otx2Neuronal progenitor cellsMutant embryosProgenitor identityConditional mutantsE10.5 onwardOtx2 activityAnterior hindbrainEctopic expressionCerebellar-like structuresSubtype specificationSubtype identityTransgenic animalsNovel roleLater roleNovel mouse modelOtx2Otx2 expression
2004
Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse
Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM. Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse. Journal Of Neuroscience 2004, 24: 6057-6069. PMID: 15240797, PMCID: PMC6729672, DOI: 10.1523/jneurosci.1140-04.2004.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DifferentiationCell CountCell LineageCell ProliferationCells, CulturedHeredodegenerative Disorders, Nervous SystemHippocampusHumansIn Situ HybridizationLateral VentriclesMiceMice, TransgenicMutagenesis, Site-DirectedNeurogliaNeuronsPyramidal CellsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Fibroblast Growth FactorRNA, MessengerStem CellsTransgenesConceptsHippocampal ventricular zonesDentate gyrusGrowth factor receptor 1Fibroblast growth factor receptor 1Factor receptor 1Ventricular zoneNeural stem cellsPyramidal neuronsHippocampal growthProgenitor cellsGranule cellsReceptor 1Glial fibrillary acidic protein promoterHuman glial fibrillary acidic protein promoterEmbryonic dorsal telencephalonRadial glial-like cellsRadial glial progenitor cellsHippocampal dentate gyrusParvalbumin-containing interneuronsDG granule cellsHippocampal pyramidal neuronsStem cellsHippocampal progenitor cellsRole of FGFR1Glial progenitor cellsLoss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice
Shin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR, Vaccarino F. Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice. Journal Of Neuroscience 2004, 24: 2247-2258. PMID: 14999075, PMCID: PMC6730438, DOI: 10.1523/jneurosci.5285-03.2004.Peer-Reviewed Original ResearchMeSH KeywordsAdrenergic alpha-AgonistsAmphetamineAnimalsCell DifferentiationCell DivisionFrontal LobeGlutamic AcidGuanfacineHumansHyperkinesisMiceMice, TransgenicNervous System MalformationsNeural InhibitionPyramidal CellsReceptor Protein-Tyrosine KinasesReceptor, Fibroblast Growth Factor, Type 1Receptors, Adrenergic, alpha-2Receptors, Fibroblast Growth FactorSignal TransductionStereotypic Movement DisorderTemporal LobeConceptsPyramidal neuronsCortical developmentTemporal areaSubcortical monoaminergic systemsGlutamatergic pyramidal neuronsCajal-Retzius cellsCortical GABAergic interneuronsCerebral cortical developmentAdrenergic receptor agonistEmbryonic neural progenitor cellsTemporal cortical areasReceptor gene productsNeural progenitor cellsEmbryonic brain developmentLocomotor hyperactivityRadial glia fibersCerebral cortexGlutamatergic neuronsBasal gangliaGABAergic interneuronsMonoaminergic systemsCortical plateReceptor agonistSpontaneous hyperactivityCortical areas