2024
Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials
Blette B, Halpern S, Li F, Harhay M. Assessing treatment effect heterogeneity in the presence of missing effect modifier data in cluster-randomized trials. Statistical Methods In Medical Research 2024, 33: 909-927. PMID: 38567439, PMCID: PMC11041086, DOI: 10.1177/09622802241242323.Peer-Reviewed Original ResearchConceptsMultilevel multiple imputationHeterogeneous treatment effectsCluster randomized trialPotential effect modifiersMultiple imputationAssess treatment effect heterogeneityEffect modifiersTreatment effect heterogeneityComplete-case analysisMissingness mechanismIntracluster correlationSimulation studyUnder-coverageRandomized trialsEffect heterogeneityHealth StudyTreatment effectsContinuous outcomesClinical practiceImputationModel specificationMissingnessData methodsModified dataTrialsDoubly robust estimation and sensitivity analysis for marginal structural quantile models
Cheng C, Hu L, Li F. Doubly robust estimation and sensitivity analysis for marginal structural quantile models. Biometrics 2024, 80: ujae045. PMID: 38884127, DOI: 10.1093/biomtc/ujae045.Peer-Reviewed Original ResearchMeSH KeywordsAntihypertensive AgentsBiometryComputer SimulationElectronic Health RecordsHumansHypertensionModels, StatisticalConceptsQuantile modelDistribution of potential outcomesEfficient influence functionPotential outcome distributionsDoubly robust estimatorsTime-varying treatmentsSequential ignorability assumptionSemiparametric frameworkIgnorability assumptionVariance estimationOutcome distributionInfluence functionRobust estimationPotential outcomesEfficient computationFunction approachTime-varying confoundersElectronic health record dataEstimationTreatment assignmentHealth record dataEffect of antihypertensive medicationEquationsRecord dataAntihypertensive medications
2023
Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations
Wang X, Turner E, Li F. Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations. Statistics In Medicine 2023, 43: 358-378. PMID: 38009329, PMCID: PMC10939061, DOI: 10.1002/sim.9966.Peer-Reviewed Original ResearchMeSH KeywordsBiasCluster AnalysisComputer SimulationHumansModels, StatisticalResearch DesignSample SizeConceptsSample size proceduresConstant treatment effectCorrelation structureSize proceduresMarginal mean modelClosed-form sample size formulaCorrelation parametersSandwich variance estimatorGroup treatment trialsEquation approachExchangeable correlation structureSample size formulaBinary outcomesVariance estimatorEmpirical powerLinear timeMean modelCorrelation matrixDifferent correlation parametersEstimating EquationsSize formulaEquationsSample size calculationDifferent assumptionsProper sample size calculationSample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes
Maleyeff L, Wang R, Haneuse S, Li F. Sample size requirements for testing treatment effect heterogeneity in cluster randomized trials with binary outcomes. Statistics In Medicine 2023, 42: 5054-5083. PMID: 37974475, PMCID: PMC10659142, DOI: 10.1002/sim.9901.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationHumansLinear ModelsMonte Carlo MethodRandomized Controlled Trials as TopicResearch DesignSample SizeConceptsSample size proceduresSize proceduresEfficient Monte Carlo approachTreatment effect heterogeneitySample size methodsMonte Carlo approachContinuous effect modifiersBinary outcomesEffect heterogeneityCarlo approachNumerical illustrationsNecessary sample sizeGeneralized linear mixed modelLinear mixed modelsPopular classSample size requirementsStatistical powerAverage treatment effectHeterogeneous treatment effectsSample size calculationMixed modelsSize methodSize calculationSize requirementsCluster Randomized TrialInformative cluster size in cluster-randomised trials: A case study from the TRIGGER trial
Kahan B, Li F, Blette B, Jairath V, Copas A, Harhay M. Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial. Clinical Trials 2023, 20: 661-669. PMID: 37439089, PMCID: PMC10638852, DOI: 10.1177/17407745231186094.Peer-Reviewed Original ResearchConceptsCluster-randomised trialCluster-level summariesAcute upper gastrointestinal bleedingExchangeable correlation structureRed blood cell transfusionEQ-5D VAS scoreMixed-effects modelsUpper gastrointestinal bleedingBlood cell transfusionMixed effects modelsTreatment effectsCell transfusionGastrointestinal bleedingIschemic eventsVAS scoresOdds ratioMost outcomesTRIGGER trialTreatment effect estimatesEffect estimatesInformative cluster sizeTrialsOutcomesParticipant outcomesCorrelation structureORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals
Meng C, Ryan M, Rathouz P, Turner E, Preisser J, Li F. ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals. Computer Methods And Programs In Biomedicine 2023, 237: 107567. PMID: 37207384, DOI: 10.1016/j.cmpb.2023.107567.Peer-Reviewed Original ResearchMeSH KeywordsBiasCluster AnalysisComputer SimulationHumansLogistic ModelsLongitudinal StudiesModels, StatisticalConceptsOrdinal outcomesSandwich estimatorR packageSimulation studyCorrelated ordinal dataFinite sample biasesNumber of clustersCovariance estimationMarginal modelsEquationsParameter estimatesOrdinal responsesAssociation parametersCluster associationsBias correctionOrdinal dataEstimatorEstimating EquationsNominal levelMarginal meansResidualsEstimationPairwise odds ratiosAssociation modelGEE modelAccounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity
Tong J, Li F, Harhay M, Tong G. Accounting for expected attrition in the planning of cluster randomized trials for assessing treatment effect heterogeneity. BMC Medical Research Methodology 2023, 23: 85. PMID: 37024809, PMCID: PMC10077680, DOI: 10.1186/s12874-023-01887-8.Peer-Reviewed Original ResearchConceptsSample size methodsSample size proceduresSize proceduresTreatment effect heterogeneityHeterogeneous treatment effectsSize methodMissingness ratesSample size formulaSample size estimationMissingness indicatorsEffect heterogeneityReal-world examplesSimulation studyIntracluster correlation coefficientInflation methodSize formulaAverage treatment effectResultsSimulation resultsSample size estimatesSize estimationMissingnessSample sizeClustersEstimationFormulaMediation analysis in the presence of continuous exposure measurement error
Cheng C, Spiegelman D, Li F. Mediation analysis in the presence of continuous exposure measurement error. Statistics In Medicine 2023, 42: 1669-1686. PMID: 36869626, PMCID: PMC11320713, DOI: 10.1002/sim.9693.Peer-Reviewed Original ResearchConceptsBody mass indexExposure measurement errorPhysical activityMediation proportionHealth Professionals FollowCardiovascular disease incidenceProfessionals FollowMediation analysisMass indexCardiovascular diseaseLower riskStudy designEffect estimatesValidation study designContinuous exposureBiased effect estimatesTrue exposureMediatorsExposureValidation studyBinary outcomesHealth science studiesOutcomesRiskDisease incidenceGEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials
Zhang Y, Preisser J, Li F, Turner E, Toles M, Rathouz P. GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials. Computer Methods And Programs In Biomedicine 2023, 230: 107362. PMID: 36709555, PMCID: PMC10037297, DOI: 10.1016/j.cmpb.2023.107362.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationLongitudinal StudiesModels, StatisticalRandomized Controlled Trials as TopicConceptsNumber of clustersBias-corrected estimationCorrelation structurePopulation-averaged interpretationMarginal regression modelsDeletion diagnosticsEstimating EquationsFinite-sample adjustmentInfluence of observationsLarge valuesStandard errorEquationsSandwich estimatorVariance estimatorCook's distanceSAS macroDesign of clusterCount outcomesLongitudinal responseCorrelation parametersValid inferencesCorrelated outcomesFlexible specificationBiased estimatesEstimator
2022
Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials
Wang X, Turner E, Li F. Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials. Biometrical Journal 2022, 65: e2200113. PMID: 36567265, PMCID: PMC10482495, DOI: 10.1002/bimj.202200113.Peer-Reviewed Original ResearchSimulating time-to-event data subject to competing risks and clustering: A review and synthesis
Meng C, Esserman D, Li F, Zhao Y, Blaha O, Lu W, Wang Y, Peduzzi P, Greene E. Simulating time-to-event data subject to competing risks and clustering: A review and synthesis. Statistical Methods In Medical Research 2022, 32: 305-333. PMID: 36412111, DOI: 10.1177/09622802221136067.Peer-Reviewed Original ResearchDesign and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model
Blaha O, Esserman D, Li F. Design and analysis of cluster randomized trials with time‐to‐event outcomes under the additive hazards mixed model. Statistics In Medicine 2022, 41: 4860-4885. PMID: 35908796, PMCID: PMC9588628, DOI: 10.1002/sim.9541.Peer-Reviewed Original ResearchMeSH KeywordsBiasCluster AnalysisComputer SimulationHumansRandomized Controlled Trials as TopicResearch DesignSample SizeConceptsSample size formulaCluster sizeNew sample size formulaSample size proceduresSize formulaEffect parametersSandwich variance estimatorStatistical inferenceCluster size variationEvent outcomesRandomization-based testsImproved inferenceSize proceduresTreatment effect parametersVariance estimatorSmall sample biasesAnalysis of clustersSimulation studyUnequal cluster sizesFrailty termVariance inflation factorFailure timeSample size requirementsMixed modelsAppropriate definitionDesigning three-level cluster randomized trials to assess treatment effect heterogeneity
Li F, Chen X, Tian Z, Esserman D, Heagerty PJ, Wang R. Designing three-level cluster randomized trials to assess treatment effect heterogeneity. Biostatistics 2022, 24: 833-849. PMID: 35861621, PMCID: PMC10583727, DOI: 10.1093/biostatistics/kxac026.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationHumansRandomized Controlled Trials as TopicResearch DesignSample SizeEstimands in cluster-randomized trials: choosing analyses that answer the right question
Kahan BC, Li F, Copas AJ, Harhay MO. Estimands in cluster-randomized trials: choosing analyses that answer the right question. International Journal Of Epidemiology 2022, 52: 107-118. PMID: 35834775, PMCID: PMC9908044, DOI: 10.1093/ije/dyac131.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationHumansRandomized Controlled Trials as TopicResearch DesignSample SizeConceptsInformative cluster sizeCluster sizeCommon estimatorsCorrelation structureAlternative estimatorsEstimatorUnbiased estimatesBiased estimatesEstimandsDifferent estimandsTarget estimandAnalytic approachCareful specificationLarge clustersEquationsDifferent analytic approachesEstimatesMixed-effects modelsClustered restricted mean survival time regression
Chen X, Harhay MO, Li F. Clustered restricted mean survival time regression. Biometrical Journal 2022, 65: e2200002. PMID: 35593026, DOI: 10.1002/bimj.202200002.Peer-Reviewed Original ResearchConceptsSandwich variance estimatorVariance estimatorValid inferencesRegression coefficient estimatesSmall sample scenariosContinuous functionsCluster correlationEffects of covariatesEstimatorHazard functionTarget parametersCoefficient estimatesMultilevel observational studyTime regressionRegression coefficientsInferenceEvent outcomesEquationsRegression modelsModelCritical assumptionsSufficient numberSimulationsFunctionAssumptionPower Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints
Yang S, Moerbeek M, Taljaard M, Li F. Power Analysis for Cluster Randomized Trials with Continuous Coprimary Endpoints. Biometrics 2022, 79: 1293-1305. PMID: 35531926, PMCID: PMC11321238, DOI: 10.1111/biom.13692.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationLinear ModelsRandomized Controlled Trials as TopicResearch DesignSample SizeConceptsMultivariate linear mixed modelTreatment effect estimatorJoint distributionEqual cluster sizesCluster sizeExpectation-maximization algorithmFinite numberEffects estimatorEmpirical powerCorrelation parametersPower analysisEstimatorSize assumptionsSample sizeNull hypothesisPower calculationPower determinationLinear mixed modelsParametersMixed modelsDesign and analysis of partially randomized preference trials with propensity score stratification
Wang Y, Li F, Blaha O, Meng C, Esserman D. Design and analysis of partially randomized preference trials with propensity score stratification. Statistical Methods In Medical Research 2022, 31: 1515-1537. PMID: 35469503, PMCID: PMC10530658, DOI: 10.1177/09622802221095673.Peer-Reviewed Original ResearchA comparison of analytical strategies for cluster randomized trials with survival outcomes in the presence of competing risks
Li F, Lu W, Wang Y, Pan Z, Greene EJ, Meng G, Meng C, Blaha O, Zhao Y, Peduzzi P, Esserman D. A comparison of analytical strategies for cluster randomized trials with survival outcomes in the presence of competing risks. Statistical Methods In Medical Research 2022, 31: 1224-1241. PMID: 35290139, PMCID: PMC10518064, DOI: 10.1177/09622802221085080.Peer-Reviewed Original ResearchFinite‐sample adjustments in variance estimators for clustered competing risks regression
Chen X, Li F. Finite‐sample adjustments in variance estimators for clustered competing risks regression. Statistics In Medicine 2022, 41: 2645-2664. PMID: 35288959, DOI: 10.1002/sim.9375.Peer-Reviewed Original ResearchTwo weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects
Wang X, Turner EL, Li F, Wang R, Moyer J, Cook AJ, Murray DM, Heagerty PJ. Two weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects. Contemporary Clinical Trials 2022, 114: 106702. PMID: 35123029, PMCID: PMC8936048, DOI: 10.1016/j.cct.2022.106702.Peer-Reviewed Original ResearchMeSH KeywordsCluster AnalysisComputer SimulationEarly Detection of CancerHumansModels, StatisticalRandomized Controlled Trials as TopicSample SizeConceptsInverse cluster sizeVariable cluster sizesCluster sizeCorrelation matrixTreatment effect estimatesCluster correlationEquation frameworkEstimation characteristicsTheoretical derivationSimulation studyAverage treatment effectHeterogeneous treatment effectsDistinct weightsEstimandsCluster levelHierarchical nestingMatrixHypothetical populationEstimatesValid resultsDerivationClustersConceptual populationEstimationEffect estimates