2024
Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures.
Ouyang Y, Taljaard M, Forbes A, Li F. Maintaining the validity of inference from linear mixed models in stepped-wedge cluster randomized trials under misspecified random-effects structures. Statistical Methods In Medical Research 2024, 9622802241248382. PMID: 38807552, DOI: 10.1177/09622802241248382.Peer-Reviewed Original ResearchRandom effects structureVariance estimationComplex correlation structureRobust variance estimationFixed effects parametersDegrees of freedom correctionCluster randomized trialEstimates of standard errorsCorrelation structureRandom effectsStepped-wedge cluster randomized trialComprehensive simulation studyLinear mixed modelsStatistical inferenceRandom intercept modelSimulation studyMixed modelsMisspecificationValidity of inferencesRandom interceptContinuous outcomesEstimationComputational challengesIntercept modelStandard error
2023
GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials
Zhang Y, Preisser J, Li F, Turner E, Toles M, Rathouz P. GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials. Computer Methods And Programs In Biomedicine 2023, 230: 107362. PMID: 36709555, PMCID: PMC10037297, DOI: 10.1016/j.cmpb.2023.107362.Peer-Reviewed Original ResearchConceptsNumber of clustersBias-corrected estimationCorrelation structurePopulation-averaged interpretationMarginal regression modelsDeletion diagnosticsEstimating EquationsFinite-sample adjustmentInfluence of observationsLarge valuesStandard errorEquationsSandwich estimatorVariance estimatorCook's distanceSAS macroDesign of clusterCount outcomesLongitudinal responseCorrelation parametersValid inferencesCorrelated outcomesFlexible specificationBiased estimatesEstimator