2024
Model‐assisted analysis of covariance estimators for stepped wedge cluster randomized experiments
Chen X, Li F. Model‐assisted analysis of covariance estimators for stepped wedge cluster randomized experiments. Scandinavian Journal Of Statistics 2024 DOI: 10.1111/sjos.12755.Peer-Reviewed Original ResearchCluster-randomized experimentANCOVA estimatesFinite population central limit theoremAnalysis of covariance estimatorCentral limit theoremLimit theoremPotential outcomes frameworkCovariance estimationRandomized experimentTarget estimandEstimandsRandomization schemeCovariate adjustmentEstimationTheoremData structureOutcomes frameworkMultilevel data structureCovariatesRobust methodClassDemystifying estimands in cluster-randomised trials
Kahan B, Blette B, Harhay M, Halpern S, Jairath V, Copas A, Li F. Demystifying estimands in cluster-randomised trials. Statistical Methods In Medical Research 2024, 33: 1211-1232. PMID: 38780480, PMCID: PMC11348634, DOI: 10.1177/09622802241254197.Peer-Reviewed Original ResearchCluster randomised trialPotential outcomes notationTreatment effect estimatesOverview of estimationPublished cluster randomised trialsCluster-level summariesTarget estimandEstimandsTreatment effectsEffect estimatesInterpretation of treatment effectsOdds ratioEstimationRandomised trialsStudy objectiveCausal interpretation of the hazard ratio in randomized clinical trials.
Fay M, Li F. Causal interpretation of the hazard ratio in randomized clinical trials. Clinical Trials 2024, 17407745241243308. PMID: 38679930, DOI: 10.1177/17407745241243308.Peer-Reviewed Original ResearchProportional hazards assumptionHazard ratioHazards assumptionConstant hazard ratioRandomized clinical trialsMeasure of treatment effectTime-varying effectsEstimandsRate ratiosUntestable assumptionsIndividual-levelPopulation-level interpretationCausal effectsClinical trialistsIndividual-level interpretationsClinical trialsAssumptionsCausal interpretationAverage changeTreatment effectsPotential outcomesModel-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments
Wang B, Park C, Small D, Li F. Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments. Journal Of The American Statistical Association 2024, ahead-of-print: 1-13. DOI: 10.1080/01621459.2023.2289693.Peer-Reviewed Original ResearchCluster-randomized experimentCluster size variationNuisance functionsParametric working modelsFlexible covariate adjustmentCovariate-adjusted estimatesCovariate adjustment methodsCovariate adjustmentModel-based covariate adjustmentEfficient estimationSimulation studyRobust inferenceSupplementary materialsEstimandsEstimating equationsModel-based estimatesG-computationCluster averagesEstimationTreatment assignmentRoutine practice conditionsRisk of biasEquationsTreatment effectsCovariates
2022
Estimands in cluster-randomized trials: choosing analyses that answer the right question
Kahan BC, Li F, Copas AJ, Harhay MO. Estimands in cluster-randomized trials: choosing analyses that answer the right question. International Journal Of Epidemiology 2022, 52: 107-118. PMID: 35834775, PMCID: PMC9908044, DOI: 10.1093/ije/dyac131.Peer-Reviewed Original ResearchConceptsInformative cluster sizeCluster sizeCommon estimatorsCorrelation structureAlternative estimatorsEstimatorUnbiased estimatesBiased estimatesEstimandsDifferent estimandsTarget estimandAnalytic approachCareful specificationLarge clustersEquationsDifferent analytic approachesEstimatesMixed-effects modelsTwo weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects
Wang X, Turner EL, Li F, Wang R, Moyer J, Cook AJ, Murray DM, Heagerty PJ. Two weights make a wrong: Cluster randomized trials with variable cluster sizes and heterogeneous treatment effects. Contemporary Clinical Trials 2022, 114: 106702. PMID: 35123029, PMCID: PMC8936048, DOI: 10.1016/j.cct.2022.106702.Peer-Reviewed Original ResearchConceptsInverse cluster sizeVariable cluster sizesCluster sizeCorrelation matrixTreatment effect estimatesCluster correlationEquation frameworkEstimation characteristicsTheoretical derivationSimulation studyAverage treatment effectHeterogeneous treatment effectsDistinct weightsEstimandsCluster levelHierarchical nestingMatrixHypothetical populationEstimatesValid resultsDerivationClustersConceptual populationEstimationEffect estimates