2024
A review of current practice in the design and analysis of extremely small stepped-wedge cluster randomized trials.
Tong G, Nevins P, Ryan M, Davis-Plourde K, Ouyang Y, Pereira Macedo J, Meng C, Wang X, Caille A, Li F, Taljaard M. A review of current practice in the design and analysis of extremely small stepped-wedge cluster randomized trials. Clinical Trials 2024, 17407745241276137. PMID: 39377196, DOI: 10.1177/17407745241276137.Peer-Reviewed Original ResearchSmall-sample correctionsStepped-wedge cluster randomized trialCluster randomized trialSample size calculation methodGeneralized linear mixed modelsLongitudinal correlation structureSize calculation methodLinear mixed modelsPermutation testSample sizeBayesian approachRandomized trialsCorrelation structureMixed modelsBayesian analysisGeneralized estimating equationsPermutationMedian sample sizeIntervention conditionRandomization methodEquationsDoubly robust estimation and sensitivity analysis for marginal structural quantile models
Cheng C, Hu L, Li F. Doubly robust estimation and sensitivity analysis for marginal structural quantile models. Biometrics 2024, 80: ujae045. PMID: 38884127, DOI: 10.1093/biomtc/ujae045.Peer-Reviewed Original ResearchConceptsQuantile modelDistribution of potential outcomesEfficient influence functionPotential outcome distributionsDoubly robust estimatorsTime-varying treatmentsSequential ignorability assumptionSemiparametric frameworkIgnorability assumptionVariance estimationOutcome distributionInfluence functionRobust estimationPotential outcomesEfficient computationFunction approachTime-varying confoundersElectronic health record dataEstimationTreatment assignmentHealth record dataEffect of antihypertensive medicationEquationsRecord dataAntihypertensive medicationsMultiply robust generalized estimating equations for cluster randomized trials with missing outcomes
Rabideau D, Li F, Wang R. Multiply robust generalized estimating equations for cluster randomized trials with missing outcomes. Statistics In Medicine 2024, 43: 1458-1474. PMID: 38488532, DOI: 10.1002/sim.10027.Peer-Reviewed Original ResearchPropensity score modelMarginal regression parametersWeighted generalized estimating equationsRobust estimationCluster randomized trialRegression parametersMarginal meansMean modelIterative algorithmMonte Carlo simulationsGeneralized estimating equationsOutcome modelBotswana Combination Prevention ProjectCarlo simulationsEquationsCorrelation parametersEstimationReduce HIV incidenceHIV prevention measuresScore modelMultipliersRandomized trialsHIV incidencePrevention ProjectModel-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments
Wang B, Park C, Small D, Li F. Model-Robust and Efficient Covariate Adjustment for Cluster-Randomized Experiments. Journal Of The American Statistical Association 2024, ahead-of-print: 1-13. DOI: 10.1080/01621459.2023.2289693.Peer-Reviewed Original ResearchCluster-randomized experimentCluster size variationNuisance functionsParametric working modelsFlexible covariate adjustmentCovariate-adjusted estimatesCovariate adjustment methodsCovariate adjustmentModel-based covariate adjustmentEfficient estimationSimulation studyRobust inferenceSupplementary materialsEstimandsEstimating equationsModel-based estimatesG-computationCluster averagesEstimationTreatment assignmentRoutine practice conditionsRisk of biasEquationsTreatment effectsCovariatesCRTFASTGEEPWR: A SAS Macro for Power of Generalized Estimating Equations Analysis of Multi-Period Cluster Randomized Trials with Application to Stepped Wedge Designs
Zhang Y, Preisser J, Li F, Turner E, Rathouz P. CRTFASTGEEPWR: A SAS Macro for Power of Generalized Estimating Equations Analysis of Multi-Period Cluster Randomized Trials with Application to Stepped Wedge Designs. Journal Of Statistical Software 2024, 108: 1-27. DOI: 10.18637/jss.v108.c01.Peer-Reviewed Original ResearchSAS macroMarginal mean modelCluster randomized trialContinuous responseStepped wedge designMean modelCorrelation structureGeneralized estimating equationsPower methodIncomplete designsGeneral methodWedge designStatistical powerTrial scenariosMulti-parameterEvaluation of interventionsRandomized trialsGeneralized estimating equation analysisEquationsInference
2023
Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations
Wang X, Turner E, Li F. Designing individually randomized group treatment trials with repeated outcome measurements using generalized estimating equations. Statistics In Medicine 2023, 43: 358-378. PMID: 38009329, PMCID: PMC10939061, DOI: 10.1002/sim.9966.Peer-Reviewed Original ResearchConceptsSample size proceduresConstant treatment effectCorrelation structureSize proceduresMarginal mean modelClosed-form sample size formulaCorrelation parametersSandwich variance estimatorGroup treatment trialsEquation approachExchangeable correlation structureSample size formulaBinary outcomesVariance estimatorEmpirical powerLinear timeMean modelCorrelation matrixDifferent correlation parametersEstimating EquationsSize formulaEquationsSample size calculationDifferent assumptionsProper sample size calculationORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals
Meng C, Ryan M, Rathouz P, Turner E, Preisser J, Li F. ORTH.Ord: An R package for analyzing correlated ordinal outcomes using alternating logistic regressions with orthogonalized residuals. Computer Methods And Programs In Biomedicine 2023, 237: 107567. PMID: 37207384, DOI: 10.1016/j.cmpb.2023.107567.Peer-Reviewed Original ResearchConceptsOrdinal outcomesSandwich estimatorR packageSimulation studyCorrelated ordinal dataFinite sample biasesNumber of clustersCovariance estimationMarginal modelsEquationsParameter estimatesOrdinal responsesAssociation parametersCluster associationsBias correctionOrdinal dataEstimatorEstimating EquationsNominal levelMarginal meansResidualsEstimationPairwise odds ratiosAssociation modelGEE modelGEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials
Zhang Y, Preisser J, Li F, Turner E, Toles M, Rathouz P. GEEMAEE: A SAS macro for the analysis of correlated outcomes based on GEE and finite-sample adjustments with application to cluster randomized trials. Computer Methods And Programs In Biomedicine 2023, 230: 107362. PMID: 36709555, PMCID: PMC10037297, DOI: 10.1016/j.cmpb.2023.107362.Peer-Reviewed Original ResearchConceptsNumber of clustersBias-corrected estimationCorrelation structurePopulation-averaged interpretationMarginal regression modelsDeletion diagnosticsEstimating EquationsFinite-sample adjustmentInfluence of observationsLarge valuesStandard errorEquationsSandwich estimatorVariance estimatorCook's distanceSAS macroDesign of clusterCount outcomesLongitudinal responseCorrelation parametersValid inferencesCorrelated outcomesFlexible specificationBiased estimatesEstimator
2022
Estimands in cluster-randomized trials: choosing analyses that answer the right question
Kahan BC, Li F, Copas AJ, Harhay MO. Estimands in cluster-randomized trials: choosing analyses that answer the right question. International Journal Of Epidemiology 2022, 52: 107-118. PMID: 35834775, PMCID: PMC9908044, DOI: 10.1093/ije/dyac131.Peer-Reviewed Original ResearchConceptsInformative cluster sizeCluster sizeCommon estimatorsCorrelation structureAlternative estimatorsEstimatorUnbiased estimatesBiased estimatesEstimandsDifferent estimandsTarget estimandAnalytic approachCareful specificationLarge clustersEquationsDifferent analytic approachesEstimatesMixed-effects modelsClustered restricted mean survival time regression
Chen X, Harhay MO, Li F. Clustered restricted mean survival time regression. Biometrical Journal 2022, 65: e2200002. PMID: 35593026, DOI: 10.1002/bimj.202200002.Peer-Reviewed Original ResearchConceptsSandwich variance estimatorVariance estimatorValid inferencesRegression coefficient estimatesSmall sample scenariosContinuous functionsCluster correlationEffects of covariatesEstimatorHazard functionTarget parametersCoefficient estimatesMultilevel observational studyTime regressionRegression coefficientsInferenceEvent outcomesEquationsRegression modelsModelCritical assumptionsSufficient numberSimulationsFunctionAssumption
2021
Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials
Wang X, Turner EL, Preisser JS, Li F. Power considerations for generalized estimating equations analyses of four‐level cluster randomized trials. Biometrical Journal 2021, 64: 663-680. PMID: 34897793, PMCID: PMC9574475, DOI: 10.1002/bimj.202100081.Peer-Reviewed Original ResearchConceptsCorrelation structureClosed-form sample size formulaModel-based varianceTrue correlation structureSandwich variance estimatorSandwich varianceSample size formulaVariance functionVariance estimatorEmpirical powerCorrelation parametersCorrelation matrixEstimating EquationsSize formulaEquationsArbitrary linkPower considerationsSame clusterPower calculationEstimatorSample sizeEquation analysisClustersFormulaMarginal modeling of cluster-period means and intraclass correlations in stepped wedge designs with binary outcomes
Li F, Yu H, Rathouz PJ, Turner EL, Preisser JS. Marginal modeling of cluster-period means and intraclass correlations in stepped wedge designs with binary outcomes. Biostatistics 2021, 23: 772-788. PMID: 33527999, PMCID: PMC9291643, DOI: 10.1093/biostatistics/kxaa056.Peer-Reviewed Original ResearchConceptsPopulation-averaged interpretationFinite sample inferenceMarginal inferenceMarginal meansRigorous justificationBinary outcomesComputational burdenIndividual-level observationsMarginal modelsInterval estimationMarginal modelingCorrelated binary outcomesCluster-period sizesJoint estimationEquationsLinear modelEstimating EquationsSW-CRTsFlexible toolFast pointInferenceEstimationAdditional mappingModelApproach
2020
A note on the estimation and inference with quadratic inference functions for correlated outcomes
Yu H, Tong G, Li F. A note on the estimation and inference with quadratic inference functions for correlated outcomes. Communications In Statistics - Simulation And Computation 2020, 51: 6525-6536. PMID: 36568127, PMCID: PMC9782733, DOI: 10.1080/03610918.2020.1805463.Peer-Reviewed Original ResearchQuadratic inference functionsInference functionScore equationsQuadratic inference function approachRegression parametersFinite samplesCombination of estimatorsGeneral settingEquationsCorrelated outcomesSimulation studyEstimatorFunction approachAnalytical insightsPopular methodInferenceSolutionMultiple setsMisspecificationSetFunctionEstimationAlternative solutionNoteParameters