2023
Metformin inhibits digestive proteases and impairs protein digestion in mice
Kelly C, Verdegaal A, Anderson B, Shaw W, Bencivenga-Barry N, Folta-Stogniew E, Goodman A. Metformin inhibits digestive proteases and impairs protein digestion in mice. Journal Of Biological Chemistry 2023, 299: 105363. PMID: 37863262, PMCID: PMC10663847, DOI: 10.1016/j.jbc.2023.105363.Peer-Reviewed Original ResearchConceptsGastrointestinal side effectsSide effectsDrug concentrationsDaily metformin doseFirst-line therapyType 2 diabetesEnteropeptidase activityPrescribed medicationsMetformin doseIntestinal lumenGastrointestinal tissuesMice exhibitMetforminProtein maldigestionHuman duodenumProtein digestionTrypsin activityDigestive enzymesMedicationsDiabetesMaldigestionDuodenumTherapyActivityMice
2022
Tuning protein half-life in mouse using sequence-defined biopolymers functionalized with lipids
Vanderschuren K, Arranz-Gibert P, Khang M, Hadar D, Gaudin A, Yang F, Folta-Stogniew E, Saltzman WM, Amiram M, Isaacs FJ. Tuning protein half-life in mouse using sequence-defined biopolymers functionalized with lipids. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2103099119. PMID: 35046019, PMCID: PMC8794819, DOI: 10.1073/pnas.2103099119.Peer-Reviewed Original ResearchConceptsSequence-defined biopolymersProtein-based drugsModel fusion proteinProof of conceptSynthetic biopolymersBroad applicationsMaterials scienceProgrammable approachLow toxicityHigh specificityPeptide therapeuticsBiopolymersLimited side effectsConjugation sitesBlood serumBiotechnologyTechnical foundationFusion proteinMouse serumBiophysical propertiesAzidophenylalanineApplicationsPast decadeTherapeutics
2016
Homodimerization enhances both sensitivity and dynamic range of the ligand‐binding domain of type 1 metabotropic glutamate receptor
Serebryany E, Folta‐Stogniew E, Liu J, Yan EC. Homodimerization enhances both sensitivity and dynamic range of the ligand‐binding domain of type 1 metabotropic glutamate receptor. FEBS Letters 2016, 590: 4308-4317. PMID: 27800613, PMCID: PMC5154874, DOI: 10.1002/1873-3468.12473.Peer-Reviewed Original Research
2009
Analysis of the cytoplasmic interaction between polycystin-1 and polycystin-2
Casuscelli J, Schmidt S, DeGray B, Petri ET, Ćelić A, Folta-Stogniew E, Ehrlich BE, Boggon TJ. Analysis of the cytoplasmic interaction between polycystin-1 and polycystin-2. American Journal Of Physiology. Renal Physiology 2009, 297: f1310-f1315. PMID: 19726544, PMCID: PMC2781345, DOI: 10.1152/ajprenal.00412.2009.Peer-Reviewed Original Research
2007
The structural basis of cyclic diguanylate signal transduction by PilZ domains
Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta‐Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF. The structural basis of cyclic diguanylate signal transduction by PilZ domains. The EMBO Journal 2007, 26: 5153-5166. PMID: 18034161, PMCID: PMC2140105, DOI: 10.1038/sj.emboj.7601918.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBacterial ProteinsBinding SitesCrystallography, X-RayCyclic GMPHumansMiceModels, MolecularMolecular ConformationMolecular Sequence DataPhylogenyProtein BindingProtein Structure, QuaternaryProtein Structure, SecondaryProtein Structure, TertiarySequence AlignmentSequence Homology, Amino AcidSignal TransductionVibrio choleraeConceptsPilZ domain-containing proteinsPilZ domainDomain-containing proteinsN-terminal domainConformational switchSecond messenger cyclic diguanylateBeta-barrel foldN-terminal loopEvolutionary diversificationCyclic diguanylateSignal transductionBioinformatics analysisStructural basisInteraction surfaceSessile growthEffector pathwaysVibrio choleraeProteinV. choleraeGMPCholeraeDomainClose appositionDiguanylateEubacteria