2024
Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer
Robles-Oteíza C, Hastings K, Choi J, Sirois I, Ravi A, Expósito F, de Miguel F, Knight J, López-Giráldez F, Choi H, Socci N, Merghoub T, Awad M, Getz G, Gainor J, Hellmann M, Caron É, Kaech S, Politi K. Hypoxia is linked to acquired resistance to immune checkpoint inhibitors in lung cancer. Journal Of Experimental Medicine 2024, 222: e20231106. PMID: 39585348, PMCID: PMC11602551, DOI: 10.1084/jem.20231106.Peer-Reviewed Original ResearchConceptsImmune checkpoint inhibitorsNon-small cell lung cancerAcquired resistanceCheckpoint inhibitorsResistant tumorsPatients treated with anti-PD-1/PD-L1 therapyAnti-PD-1/PD-L1 therapyLung cancerResistance to immune checkpoint inhibitorsAssociated with decreased progression-free survivalHypoxia activated pro-drugsTargeting hypoxic tumor regionsTreat non-small cell lung cancerAnti-CTLA-4Anti-PD-1Immune checkpoint inhibitionTumor metabolic featuresProgression-free survivalCell lung cancerResistant cancer cellsHypoxic tumor regionsMHC-II levelsRegions of hypoxiaKnock-outCheckpoint inhibition
2023
The SysteMHC Atlas v2.0, an updated resource for mass spectrometry-based immunopeptidomics
Huang X, Gan Z, Cui H, Lan T, Liu Y, Caron E, Shao W. The SysteMHC Atlas v2.0, an updated resource for mass spectrometry-based immunopeptidomics. Nucleic Acids Research 2023, 52: d1062-d1071. PMID: 38000392, PMCID: PMC10767952, DOI: 10.1093/nar/gkad1068.Peer-Reviewed Original Research
2022
Cellular senescence is immunogenic and promotes anti-tumor immunity
Marin I, Boix O, Garcia-Garijo A, Sirois I, Caballe A, Zarzuela E, Ruano I, Attolini C, Prats N, López-Domínguez J, Kovatcheva M, Garralda E, Muñoz J, Caron E, Abad M, Gros A, Pietrocola F, Serrano M. Cellular senescence is immunogenic and promotes anti-tumor immunity. Cancer Discovery 2022, 13: 410-431. PMID: 36302218, PMCID: PMC7614152, DOI: 10.1158/2159-8290.cd-22-0523.Peer-Reviewed Original ResearchConceptsCD8 T cellsAntitumor immune responseImmunogenic cell deathDendritic cellsSenescent cancer cellsT cellsCancer cellsImmune responseAntigen-specific CD8 T cellsSenescent cellsRelease of alarminsAnti-tumor immunityInnate immune cellsHuman primary cancer cellsActivation of IFNCellular senescencePrimary cancer cellsAdaptive immune systemCell deathCD8 lymphocytesAntitumor protectionImmune cellsImmune systemContext of cancerInduction of senescence
2018
A tissue-based draft map of the murine MHC class I immunopeptidome
Schuster H, Shao W, Weiss T, Pedrioli P, Roth P, Weller M, Campbell D, Deutsch E, Moritz R, Planz O, Rammensee H, Aebersold R, Caron E. A tissue-based draft map of the murine MHC class I immunopeptidome. Scientific Data 2018, 5: 180157. PMID: 30084848, PMCID: PMC6080492, DOI: 10.1038/sdata.2018.157.Peer-Reviewed Original ResearchConceptsMHC class IClass IMurine MHC class IPotential tumor-associated antigenMajor histocompatibility complex class IHistocompatibility complex class ITumor-associated antigensComplex class IC57BL/6 miceT cellsTranslational immunologyCancer modelImmune systemNormal tissuesMS injectionMost tissuesTissueInitial qualitative dataTotal numberPeptidesCD8AtlasAntigenMice
2017
Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry
Caron E, Roncagalli R, Hase T, Wolski W, Choi M, Menoita M, Durand S, García-Blesa A, Fierro-Monti I, Sajic T, Heusel M, Weiss T, Malissen M, Schlapbach R, Collins B, Ghosh S, Kitano H, Aebersold R, Malissen B, Gstaiger M. Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry. Cell Reports 2017, 18: 3219-3226. PMID: 28355572, PMCID: PMC5382234, DOI: 10.1016/j.celrep.2017.03.019.Peer-Reviewed Original ResearchConceptsSWATH mass spectrometryProtein interactionsProtein interaction dynamicsPrimary cellsTissue-specific contextDifferential protein expressionCell-signaling eventsInteraction proteomeProtein Grb2Cellular functionsMouse geneticsCell signalingAffinity purificationMammalian tissuesDevelopmental stagesTemporal profilingSpatiotemporal organizationMass spectrometryFundamental processesProtein expressionCell populationsRobust workflowCellsInteraction dynamicsGrb2
2014
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens
Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515: 577-581. PMID: 25428507, PMCID: PMC4279952, DOI: 10.1038/nature13988.Peer-Reviewed Original Research
2011
The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation
Caron E, Vincent K, Fortier M, Laverdure J, Bramoullé A, Hardy M, Voisin G, Roux P, Lemieux S, Thibault P, Perreault C. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Molecular Systems Biology 2011, 7: msb201168. PMID: 21952136, PMCID: PMC3202804, DOI: 10.1038/msb.2011.68.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD8-Positive T-LymphocytesCell Line, TumorCell MembraneGene Expression ProfilingHigh-Throughput Screening AssaysHistocompatibility Antigens Class IImmunityMajor Histocompatibility ComplexMass SpectrometryMetabolic Networks and PathwaysMiceOligonucleotide Array Sequence AnalysisPeptidesProteomicsSignal TransductionSirolimusSystems BiologyTandem Mass SpectrometryTOR Serine-Threonine KinasesConceptsCell surfaceMass spectrometry-based approachSystems-level evidenceSelf/non-self discriminationCellular regulationPredictive biologyCellular metabolic activityCellular metabolismNon-self discriminationRapamycin resultsMammalian targetMHC IBiochemical networksCD8 T lymphocytesSystems immunologyMajor histocompatibility complex (MHC) class I moleculesMetabolic eventsExtrinsic factorsMetabolic activityIntegrative viewClass I moleculesImmunotherapeutic interventionsT lymphocytesEssence of selfSystem-level perspective
2010
Deletion of Immunoproteasome Subunits Imprints on the Transcriptome and Has a Broad Impact on Peptides Presented by Major Histocompatibility Complex I molecules*
de Verteuil D, Muratore-Schroeder T, Granados D, Fortier M, Hardy M, Bramoullé A, Caron É, Vincent K, Mader S, Lemieux S, Thibault P, Perreault C. Deletion of Immunoproteasome Subunits Imprints on the Transcriptome and Has a Broad Impact on Peptides Presented by Major Histocompatibility Complex I molecules*. Molecular & Cellular Proteomics 2010, 9: 2034-2047. PMID: 20484733, PMCID: PMC2938112, DOI: 10.1074/mcp.m900566-mcp200.Peer-Reviewed Original ResearchConceptsMIP repertoireLabel-free quantitative proteomics approachComplex ICell type-specific signaturesBasic cellular processesUnstructured protein regionsProteasome-mediated proteolysisQuantitative proteomics approachSet of genesPrimary mouse dendritic cellsJawed vertebratesRegulated genesCellular processesProteomic approachMass spectrometry analysisGene transcriptionBioinformatics analysisChromosome 4Protein regionsPrimary cellsGenesCleavage preferenceSpectrometry analysisCell functionPeptidomics studies
2009
ER stress affects processing of MHC class I-associated peptides
Granados D, Tanguay P, Hardy M, Caron É, de Verteuil D, Meloche S, Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunology 2009, 10: 10. PMID: 19220912, PMCID: PMC2657905, DOI: 10.1186/1471-2172-10-10.Peer-Reviewed Original Research
2008
The MHC class I peptide repertoire is molded by the transcriptome
Fortier M, Caron E, Hardy M, Voisin G, Lemieux S, Perreault C, Thibault P. The MHC class I peptide repertoire is molded by the transcriptome. Journal Of Experimental Medicine 2008, 205: 595-610. PMID: 18299400, PMCID: PMC2275383, DOI: 10.1084/jem.20071985.Peer-Reviewed Original ResearchMeSH KeywordsAllelesAmino Acid SequenceAnimalsCell LineCell Line, TumorComputational BiologyGene Expression ProfilingGenes, MHC Class IHistocompatibility Antigens Class IMiceMultiprotein ComplexesOligonucleotide Array Sequence AnalysisPeptidesProtein BindingRNA, MessengerTandem Mass SpectrometryT-LymphocytesTransfectionConceptsMIP repertoireCyclin/cyclin-dependent kinasePrimary mouse thymocytesCyclin-dependent kinasesMass spectrometry approachMouse thymocytesAbundant transcriptsGlobal profilingHigh-throughput analysisPosttranscriptional mechanismsNeoplastic thymocytesRelative abundanceTranscriptomeMHC class INeoplastic transformationCancer cellsMHC IMolecular compositionPeptidomics dataRepertoirePeptidesClass IMajor histocompatibility complex I moleculesThymocytesHelicases
2006
Asynchronous Differentiation of CD8 T Cells That Recognize Dominant and Cryptic Antigens
Baron C, Meunier M, Caron É, Côté C, Cameron M, Kelvin D, LeBlanc R, Rineau V, Perreault C. Asynchronous Differentiation of CD8 T Cells That Recognize Dominant and Cryptic Antigens. The Journal Of Immunology 2006, 177: 8466-8475. PMID: 17142744, DOI: 10.4049/jimmunol.177.12.8466.Peer-Reviewed Original ResearchConceptsCD8 T cellsT cell responsesT cellsDay 10Cell responsesEffector CD8 T cellsEffector T cellsT cell differentiation markersT cell repertoireT cell differentiation programMouse AgCryptic antigensEffector potentialCell differentiation markersImmune responseCell repertoireEffector functionsAg specificityDay 15Differentiation programSelective expansionDifferentiation markersCell differentiation programLongitudinal analysisContraction phase
2005
Identification of two distinct intracellular localization signals in STT3-B
Caron É, Côté C, Parisien M, Major F, Perreault C. Identification of two distinct intracellular localization signals in STT3-B. Archives Of Biochemistry And Biophysics 2005, 445: 108-114. PMID: 16297371, DOI: 10.1016/j.abb.2005.10.007.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCell LineChlorocebus aethiopsComputational BiologyConserved SequenceEndoplasmic ReticulumHumansIsoenzymesMembrane ProteinsMiceMicroscopy, Electron, TransmissionMolecular Sequence DataNuclear Localization SignalsPhylogenyProtein Structure, TertiaryRecombinant Fusion ProteinsSequence Homology, Amino AcidConceptsBipartite nuclear targeting sequenceRemarkable evolutionary conservationNuclear targeting sequenceN-glycosylation processIntracellular localization signalsC-terminal domainLast transmembrane segmentAmino acid sequenceSTT3 subunitEvolutionary conservationTargeting sequenceLocalization signalOligosaccharyltransferase complexTopogenic determinantsTransmembrane segmentsNucleolar localizationSTT3Reporter proteinTM segmentsTerminal tailAcid sequenceHomo sapiensLatter sequenceCritical roleSequenceThe structure and location of SIMP/STT3B account for its prominent imprint on the MHC I immunopeptidome
Caron É, Charbonneau R, Huppé G, Brochu S, Perreault C. The structure and location of SIMP/STT3B account for its prominent imprint on the MHC I immunopeptidome. International Immunology 2005, 17: 1583-1596. PMID: 16263756, DOI: 10.1093/intimm/dxh336.Peer-Reviewed Original Research