2010
Substrate specificity of Rhbg: ammonium and methyl ammonium transport
Nakhoul N, Abdulnour-Nakhoul S, Boulpaep E, Rabon E, Schmidt E, Hamm L. Substrate specificity of Rhbg: ammonium and methyl ammonium transport. American Journal Of Physiology - Cell Physiology 2010, 299: c695-c705. PMID: 20592240, PMCID: PMC2944323, DOI: 10.1152/ajpcell.00019.2010.Peer-Reviewed Original ResearchMouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct
Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA–regulated apical chloride channels in cortical collecting duct. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 6082-6087. PMID: 20231442, PMCID: PMC2851921, DOI: 10.1073/pnas.0902661107.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBenzoatesChloride ChannelsCyclic AMPCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleIn Vitro TechniquesKidney CortexKidney Tubules, CollectingKineticsMiceMice, Inbred C57BLMice, Inbred CFTRMice, KnockoutMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingRecombinant ProteinsThiazolidinesXenopus laevisConceptsCystic fibrosis transmembrane conductance regulatorFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorCl- channel activityConductance regulatorCl- channelsApical membrane proteinsExpression of CFTRChannel activityCFTR Cl- channelApical chloride channelApical cell membraneDeltaF508 CFTR mutationMembrane proteinsCatalytic subunitXenopus laevis oocytesForm proteinPrincipal cellsCFTR channelsROMK null miceApical patchesApical membraneSingle-channel conductanceChloride channelsCell membrane
2006
CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Lu M, Leng Q, Egan ME, Caplan MJ, Boulpaep EL, Giebisch GH, Hebert SC. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney. Journal Of Clinical Investigation 2006, 116: 797-807. PMID: 16470247, PMCID: PMC1361349, DOI: 10.1172/jci26961.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCurcuminCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorHydrogen-Ion ConcentrationKidneyMiceMice, Inbred C57BLMice, Inbred CFTRMice, TransgenicMutationOocytesPatch-Clamp TechniquesPotassium Channels, Inwardly RectifyingXenopus laevisConceptsFunctional switchCystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channelATP sensitivityEffects of CFTRThick ascending limbPotential physiological rolePKA activityRenal K channelsCystic fibrosisPhysiological roleSecretory channelsK channelsRenal tubule epithelial cellsApical membraneCFTRDeltaF508 mutationDistal nephron segmentsCl- channelsK homeostasisTubule epithelial cellsEpithelial cellsTAL cellsPotassium channelsK handlingGlibenclamide sensitivity
2004
Characteristics of renal Rhbg as an NH4+ transporter
Nakhoul N, DeJong H, Abdulnour-Nakhoul S, Boulpaep E, Hering-Smith K, Hamm L. Characteristics of renal Rhbg as an NH4+ transporter. American Journal Of Physiology. Renal Physiology 2004, 288: f170-f181. PMID: 15353405, DOI: 10.1152/ajprenal.00419.2003.Peer-Reviewed Original Research
1997
Expression cloning and characterization of a renal electrogenic Na+ /HCO3− cotransporter
Romero M, Hediger M, Boulpaep E, Boron W. Expression cloning and characterization of a renal electrogenic Na+ /HCO3− cotransporter. Nature 1997, 387: 409-413. PMID: 9163427, DOI: 10.1038/387409a0.Peer-Reviewed Original ResearchConceptsPotential membrane-spanning domainsMembrane-spanning domainsElectrogenic sodium bicarbonate cotransporterBinding of inhibitorsSodium bicarbonate cotransporterAnimal cellsBicarbonate transportersElectrogenic transportersSuccessful cloningExpression cloningComplementary DNAPrincipal regulatorAmino acidsBicarbonate cotransporterProtein purificationFunctional familiesXenopus oocytesMolecular informationTransportersCloningReproductive systemSalamander Ambystoma tigrinumProteinAmbystoma tigrinumIntracellular pHThe Renal Electrogenic Na+:HCO3− Cotransporter
Boron W, Hediger M, Boulpaep E, Romero M. The Renal Electrogenic Na+:HCO3− Cotransporter. Journal Of Experimental Biology 1997, 200: 263-268. PMID: 9050234, DOI: 10.1242/jeb.200.2.263.Peer-Reviewed Original ResearchMeSH KeywordsAmbystomaAnimalsBicarbonatesCarrier ProteinsCloning, MolecularDNA, ComplementaryHydrogen-Ion ConcentrationKidney Tubules, ProximalMembrane PotentialsMicroinjectionsOocytesRabbitsRecombinant Fusion ProteinsRNA, MessengerSodiumSodium-Bicarbonate SymportersStructure-Activity RelationshipXenopus laevisConceptsRenal proximal tubules
1996
Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney.
Yao X, Chang AY, Boulpaep EL, Segal AS, Desir GV. Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney. Journal Of Clinical Investigation 1996, 97: 2525-2533. PMID: 8647945, PMCID: PMC507338, DOI: 10.1172/jci118700.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceBrainCloning, MolecularDNA PrimersFemaleGenetic VariationGenomic LibraryGlyburideHumansKidney MedullaKv1.3 Potassium ChannelMiceModels, BiologicalMolecular Sequence DataOocytesPancreatitis-Associated ProteinsPhylogenyPolymerase Chain ReactionPotassium ChannelsPotassium Channels, Voltage-GatedRabbitsRecombinant ProteinsSequence Homology, Amino AcidXenopus laevisConceptsVoltage-gated potassium channelsMolecular cloningFunctional expressionShaker-like potassium channelsPotassium channelsShaker geneGRB-PAP1Novel memberAmino terminusMolecular evidenceShaker channelsAmino acidsXenopus oocytesRabbit kidneyRenal potassium transportCloningGenesPotassium transportChannel clonesFirst reportRabbit brainPotassium conductanceFamilyExpressionKidney
1995
Primary structure and functional expression of a cGMP-gated potassium channel.
Yao X, Segal AS, Welling P, Zhang X, McNicholas CM, Engel D, Boulpaep EL, Desir GV. Primary structure and functional expression of a cGMP-gated potassium channel. Proceedings Of The National Academy Of Sciences Of The United States Of America 1995, 92: 11711-11715. PMID: 8524834, PMCID: PMC40472, DOI: 10.1073/pnas.92.25.11711.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsBase SequenceCloning, MolecularCyclic GMPElectric ConductivityGene LibraryIon Channel GatingMolecular Sequence DataOocytesPhylogenyPotassiumPotassium ChannelsProtein BiosynthesisProtein ConformationRabbitsRNA, MessengerSequence Homology, Amino AcidTissue DistributionXenopusConceptsDeduced amino acid sequenceChannel protein phosphorylationCysteine-rich regionAmino acid sequenceNorthern blot analysisPotassium channel activityProtein phosphorylationAcid sequenceGene expressionPrimary structureFunctional expressionK channelsIon channelsChannel activityBlot analysisCyclic nucleotidesShaker K channelsPotassium channelsEffects of substancesKCN1Intracellular cGMPCGMPNitric oxideExpressionImportant role