1994
Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli
Salazar O, Sagredo B, Jedlicki E, Söll D, Weygand-Durasevic I, Orellana O. Thiobacillus ferrooxidans tyrosyl-tRNA synthetase functions in vivo in Escherichia coli. Journal Of Bacteriology 1994, 176: 4409-4415. PMID: 7517395, PMCID: PMC205654, DOI: 10.1128/jb.176.14.4409-4415.1994.Peer-Reviewed Original ResearchMeSH KeywordsAcidithiobacillus thiooxidansAmino Acid SequenceBase SequenceGene Expression Regulation, BacterialGenes, BacterialGenetic Complementation TestMolecular Sequence DataMutationNucleic Acid HybridizationOperonPromoter Regions, GeneticRNA, BacterialRNA, RibosomalRNA, Transfer, TyrSequence Analysis, DNATyrosine-tRNA LigaseConceptsOverall identityTyrosyl-tRNA synthetase geneRho-independent transcription terminatorEscherichia coli TyrRSClass I aminoacyl-tRNA synthetasesRibosomal RNA operonSingle-copy geneAminoacyl-tRNA synthetasesTyrosyl-tRNA synthetasesSouthern blot analysisRNA operonBioleaching of mineralsThermosensitive mutationTranscription unitTranscription terminatorSynthetase genePutative promoterProtein sequencesSynthetase functionE. coli strainsGenesSignature sequencesEscherichia coliAmino acidsDNA probes
1990
Expression of the Synechocystis sp. strain PCC 6803 tRNA(Glu) gene provides tRNA for protein and chlorophyll biosynthesis
O'Neill G, Söll D. Expression of the Synechocystis sp. strain PCC 6803 tRNA(Glu) gene provides tRNA for protein and chlorophyll biosynthesis. Journal Of Bacteriology 1990, 172: 6363-6371. PMID: 2121711, PMCID: PMC526821, DOI: 10.1128/jb.172.11.6363-6371.1990.Peer-Reviewed Original ResearchConceptsSynechocystis 6803Synechocystis spFirst anticodon baseStrain PCC 6803Cyanobacterium Synechocystis spTotal tRNA populationAmount of chlorophyllNorthern blot analysisChlorophyll biosynthesisALA biosynthesisPrecursor tRNAsPCC 6803TRNA speciesProtein biosynthesisTRNA populationCellular RNAAminoacylation assaysChlorophyll levelsBiosynthesisAddition of inhibitorsBlot analysisTranslation systemDelta-aminolevulinic acidTRNAChlorophyllYeast suppressor mutations and transfer RNA processing
Nichols M, Willis I, Söll D. Yeast suppressor mutations and transfer RNA processing. Methods In Enzymology 1990, 181: 377-394. PMID: 2199758, DOI: 10.1016/0076-6879(90)81137-j.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernChromosomes, FungalGenes, FungalIndicators and ReagentsMolecular Sequence DataMutationNucleic Acid ConformationNucleic Acid HybridizationRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA, TransferRNA, Transfer, SerSaccharomyces cerevisiaeSuppression, GeneticTranscription FactorsTranscription, GeneticConceptsTRNA genesMature-sized tRNAsRNA processing reactionsPrimer-directed mutagenesisAminoacyl-tRNA synthetaseTransfer RNA moleculesCognate aminoacyl-tRNA synthetaseRNA processingSuppressor mutationsTRNA locusElongation factorProtein biosynthesisRibosomal interactionsRNA moleculesMutant strainStructural proteinsPink coloniesTranscription efficiencyProcessing reactionsProtein synthesisSuppressor functionTRNALow template concentrationsGenesLoci
1988
Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae
Kolman C, Snyder M, Söll D. Genomic organization of tRNA and aminoacyl-tRNA synthetase genes for two amino acids in Saccharomyces cerevisiae. Genomics 1988, 3: 201-206. PMID: 3066745, DOI: 10.1016/0888-7543(88)90080-8.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetase genesContour-clamped homogeneous electric field gel electrophoresisHomogeneous electric field gel electrophoresisSynthetase geneGenomic organizationSmall multigene familyDNA gel blotsAmino acidsField gel electrophoresisGel electrophoresisTRNA genesChromosome assignmentMultigene familyGel blotsGene sequencesS. cerevisiaeChromosomal DNATRNAGenesSaccharomycesAspartic acidElectrophoresisGenomeCerevisiaeFamilyFormation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species
O'Neill G, Peterson D, Schön A, Chen M, Söll D. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. Journal Of Bacteriology 1988, 170: 3810-3816. PMID: 2900830, PMCID: PMC211375, DOI: 10.1128/jb.170.9.3810-3816.1988.Peer-Reviewed Original ResearchConceptsPrecursor delta-aminolevulinic acidHigher plantsUnicellular cyanobacterium Synechocystis spGlutamate-1-semialdehyde aminotransferaseCell extractsCyanobacterium Synechocystis spDelta-aminolevulinic acidSouthern blot analysisIdentical primary sequencesSynechocystis spNucleotide modificationsConversion of glutamateGene copiesALA synthesisPrimary sequenceSequence specificityTerminal enzymePolyacrylamide gel electrophoresisChloroplastsEuglena gracilisEscherichia coliSpeciesBlot analysisTRNAGel electrophoresis
1986
Two RNA species co‐purify with RNase P from the fission yeast Schizosaccharomyces pombe.
Krupp G, Cherayil B, Frendewey D, Nishikawa S, Söll D. Two RNA species co‐purify with RNase P from the fission yeast Schizosaccharomyces pombe. The EMBO Journal 1986, 5: 1697-1703. PMID: 3743551, PMCID: PMC1166996, DOI: 10.1002/j.1460-2075.1986.tb04413.x.Peer-Reviewed Original ResearchConceptsM1 RNARNA speciesK RNASecondary structureFission yeast SchizosaccharomycesRNase P activityYeast genomic DNALimited sequence homologyYeast SchizosaccharomycesHaploid genomeSchizosaccharomyces pombeRNase PSingle copySouthern analysisSequence homologyGenomic DNAP activityRNAEscherichia coliHairpin loopSame basic organizationEnzyme activityBasic organizationInactivation experimentsSpeciesThe nucleotide sequence, localization and transcriptional properties of a tRNACUGLeu gene from Drosophila melanogaster
Glew L, Lo R, Recce T, Nichols M, Söll D, Bell J. The nucleotide sequence, localization and transcriptional properties of a tRNACUGLeu gene from Drosophila melanogaster. Gene 1986, 44: 307-314. PMID: 2946625, DOI: 10.1016/0378-1119(86)90195-2.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBacteriophage lambdaBase SequenceDrosophila melanogasterEscherichia coliGenesNucleic Acid ConformationNucleic Acid HybridizationRNA, Transfer, Amino AcylTranscription, Genetic
1985
First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes
Krupp G, Thuriaux P, Willis I, Gamulin V, Söll D. First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes. Molecular Genetics And Genomics 1985, 201: 82-87. PMID: 3903436, DOI: 10.1007/bf00397990.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceEscherichia coliGenes, FungalMutationNucleic Acid HybridizationPlasmidsRNA, TransferSaccharomycetalesSchizosaccharomycesSpecies SpecificitySuppression, GeneticConceptsS. pombeAmber allelesAmber suppressor allelesFission yeast SchizosaccharomycesS. pombe transformantsAmber suppressor tRNANonsense mutationAmber nonsense mutationsSuppressor tRNA geneTRNA genesFission yeastYeast SchizosaccharomycesSchizosaccharomyces pombeSuppressor allelesTRP1 locusAmber mutationSuppressor tRNAPombeNonsense allelesNorthern analysisNitrosoguanidine mutagenesisOchre alleleGenesFirst identificationTRNASerTwo control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli
Cheung A, Watson L, Söll D. Two control systems modulate the level of glutaminyl-tRNA synthetase in Escherichia coli. Journal Of Bacteriology 1985, 161: 212-218. PMID: 2578447, PMCID: PMC214858, DOI: 10.1128/jb.161.1.212-218.1985.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseEscherichia coli glutaminyl-tRNA synthetaseBeta-galactosidase structural genePost-transcriptional regulationStructural geneTranscriptional controlRegulatory mutationsTranslational levelGln-10Metabolic regulationEscherichia coliSynthetaseVivo expressionTranscriptionGrowth conditionsRegulationMRNA levelsRegulatory studiesSynthetase levelsMutationsGlnGrowth rateGenesPromoterColi
1983
Organization and Expression of tRNA Genes in Drosophila Melanogaster
Sharp S, Cooley L, DeFranco D, Dingermann T, Söll D. Organization and Expression of tRNA Genes in Drosophila Melanogaster. Recent Results In Cancer Research 1983, 84: 1-14. PMID: 6405456, DOI: 10.1007/978-3-642-81947-6_1.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceDrosophila melanogasterGenesNucleic Acid ConformationNucleic Acid HybridizationRNA, TransferTranscription, GeneticConceptsProtein-synthesizing machineryCorrect amino acidCognate aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesTransfer RNA moleculesSpecific recognition featuresStructure-function relationshipsTRNA genesDrosophila melanogasterTRNA speciesRNA moleculesGeneral structural featuresPolypeptide chainTRNAAmino acidsRegulatory processesUseful moleculesFunctional characteristicsStructural featuresIntegral componentRecognition featuresMelanogasterEfficient recognitionSynthetasesRibosomes
1982
Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe
Barnitz J, Cramer J, Rownd R, Cooley L, Söll D. Arrangement of the ribosomal RNA genes in Schizosaccharomyces pombe. FEBS Letters 1982, 143: 129-132. PMID: 6288447, DOI: 10.1016/0014-5793(82)80288-3.Peer-Reviewed Original ResearchOrganization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupin ( Lupinus lutens )
Rafalski J, Wiewiorowski M, SÖll D. Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupin ( Lupinus lutens ). Nucleic Acids Research 1982, 10: 7635-7642. PMID: 7155897, PMCID: PMC327035, DOI: 10.1093/nar/10.23.7635.Peer-Reviewed Original ResearchThe 5.8S RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe
Schaak J, Mao J, Söll D. The 5.8S RNA gene sequence and the ribosomal repeat of Schizosaccharomyces pombe. Nucleic Acids Research 1982, 10: 2851-2864. PMID: 6285312, PMCID: PMC320660, DOI: 10.1093/nar/10.9.2851.Peer-Reviewed Original ResearchMeSH KeywordsAscomycotaDNA Restriction EnzymesGenesNucleic Acid ConformationNucleic Acid HybridizationRepetitive Sequences, Nucleic AcidRNA, RibosomalSchizosaccharomycesConceptsRNA genesSchizosaccharomyces pombeRNA speciesGene sequencesDNA fragmentsKb HindIII DNA fragmentRRNA gene repeatsRNA gene sequencesKb DNA fragmentHindIII DNA fragmentSecondary structure modelNumber of nucleotidesHigher eukaryotesGene repeatIntergenic spacerN. crassaRibosomal repeatNucleotide sequenceS. cerevisiaeGreatest homologySequence differencesVariable stemGenesRNARepeatsGenes for tRNA 5Lys from Drosophila melanogaster
DeFranco D, Burke K, Hayashi S, Tener G, Miller R, Söll D. Genes for tRNA 5Lys from Drosophila melanogaster. Nucleic Acids Research 1982, 10: 5799-5808. PMID: 6292853, PMCID: PMC320931, DOI: 10.1093/nar/10.19.5799.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCloning, MolecularDNA Restriction EnzymesDrosophila melanogasterGenesNucleic Acid HybridizationPlasmidsRNA, Transfer, Amino AcylTranscription, Genetic
1981
The initiator tRNA genes of Drosophila melanogaster: evidence for a tRNA pseudogene
Sharp S, DeFranco D, Silberklang M, Hosbach H, Schmidt T, Kubli E, Gergen J, Wensink P, Söll D. The initiator tRNA genes of Drosophila melanogaster: evidence for a tRNA pseudogene. Nucleic Acids Research 1981, 9: 5867-5882. PMID: 6273811, PMCID: PMC327570, DOI: 10.1093/nar/9.22.5867.Peer-Reviewed Original ResearchConceptsInitiator tRNA geneTRNA genesDrosophila genomeDrosophila melanogasterTRNA gene familyRNA polymerase IIIDrosophila melanogaster DNAKb DNA fragmentTRNA pseudogenesRepetitive DNAGene familyPolymerase IIISingle copyGenomic DNADNA fragmentsPseudogenesRepeat segmentsGenesHybridization analysisFourth cloneMelanogasterSitu hybridizationGenomeDNAFragments
1975
Bacteriophage λ induction causes increased production of E. coli lysine transfer RNA
Kwong T, Steege D, Lawler D, Söll D. Bacteriophage λ induction causes increased production of E. coli lysine transfer RNA. Archives Of Biochemistry And Biophysics 1975, 170: 651-658. PMID: 1103738, DOI: 10.1016/0003-9861(75)90161-7.Peer-Reviewed Original Research
1972
Properties of a dimer of tRNA I Tyr 1 (Escherichia coli).
Yang S, Söll D, Crothers D. Properties of a dimer of tRNA I Tyr 1 (Escherichia coli). Biochemistry 1972, 11: 2311-20. PMID: 4555033, DOI: 10.1021/bi00762a016.Peer-Reviewed Original ResearchAmino Acyl-tRNA SynthetasesCarbon IsotopesChemical PhenomenaChemistryChemistry, PhysicalEscherichia coliHot TemperatureKineticsMacromolecular SubstancesMagnesiumMathematicsModels, ChemicalModels, StructuralNucleic Acid ConformationNucleic Acid DenaturationNucleic Acid HybridizationRNA, BacterialRNA, TransferSodiumSpectrophotometryTemperatureThermodynamicsTyrosineUltracentrifugationUltraviolet RaysInvestigation of adenovirus-directed 4S RNA
Kline L, Weissman S, Söll D. Investigation of adenovirus-directed 4S RNA. Virology 1972, 48: 291-296. PMID: 5017153, DOI: 10.1016/0042-6822(72)90142-0.Peer-Reviewed Original Research