2012
The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*
Ling J, Peterson KM, Simonović I, Söll D, Simonović M. The Mechanism of Pre-transfer Editing in Yeast Mitochondrial Threonyl-tRNA Synthetase*. Journal Of Biological Chemistry 2012, 287: 28518-28525. PMID: 22773845, PMCID: PMC3436575, DOI: 10.1074/jbc.m112.372920.Peer-Reviewed Original ResearchConceptsPre-transfer editingThreonyl-tRNA synthetaseHydrolytic water moleculeFundamental biological processesNormal cellular functionAminoacyl-tRNA synthetasesPost-transfer editingPost-transfer editing activityTranslational fidelityAminoacylation siteCellular functionsAminoacylation active siteBiological processesMST1Conformational changesEditing activitySeryl adenylateAmino acidsSpecialized domainsEditingSerineSites 100SynthetaseActive siteAdenylateYeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment
Ling J, Peterson KM, Simonović I, Cho C, Söll D, Simonović M. Yeast mitochondrial threonyl-tRNA synthetase recognizes tRNA isoacceptors by distinct mechanisms and promotes CUN codon reassignment. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 3281-3286. PMID: 22343532, PMCID: PMC3295322, DOI: 10.1073/pnas.1200109109.Peer-Reviewed Original ResearchMeSH KeywordsAeropyrumAmino Acid SequenceAnticodonCatalytic DomainCodonCrystallography, X-RayEscherichia coliEvolution, MolecularLeucineMitochondriaModels, MolecularMolecular Sequence DataProtein ConformationProtein Structure, TertiaryRNA EditingRNA, Transfer, Amino AcylSaccharomyces cerevisiaeSaccharomyces cerevisiae ProteinsSequence AlignmentSpecies SpecificityStaphylococcus aureusSubstrate SpecificityThreonineThreonine-tRNA LigaseConceptsThreonyl-tRNA synthetaseAnticodon loopAnticodon sequenceEscherichia coli ThrRSSet of tRNAsDistinct recognition mechanismsAnticodon-binding domainAminoacyl-tRNA synthetasesCUN codonsDetailed structural comparisonCodon reassignmentYeast mitochondriaGenetic codeTRNA isoacceptorsSaccharomyces cerevisiaeIsoacceptor tRNAsEditing domainTRNAMST1Anticodon tripletStructural comparisonNatural tRNAAmino acidsDistinct mechanismsRecognition mechanism
2009
A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea
Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Söll D. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea. Science 2009, 324: 657-659. PMID: 19407206, PMCID: PMC2857566, DOI: 10.1126/science.1170123.Peer-Reviewed Original ResearchConceptsTransfer RNAArchaeon Methanopyrus kandleriTertiary coreCytidine deaminase domainsTRNA genesTransfer RNAsTHUMP domainProper foldingU editingC deaminationMethanopyrus kandleriTRNA tertiary structureDeaminase domainTertiary structureTRNA tertiary corePosition 8Cytidine deaminaseUnique familyArchaeaRNAsGenesRNAFoldingDomainCrystal structure
2008
Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation
Sherrer RL, O’Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Research 2008, 36: 1247-1259. PMID: 18174226, PMCID: PMC2275090, DOI: 10.1093/nar/gkm1134.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphatasesAdenosine TriphosphateAmino Acid SequenceArchaeal ProteinsBinding SitesEvolution, MolecularKineticsMethanococcalesModels, MolecularMutationPhosphotransferasesPhylogenyProtein Structure, TertiaryRNA, Transfer, Amino AcylSequence AlignmentSingle-Strand Specific DNA and RNA EndonucleasesSubstrate SpecificityConceptsATPase active sitePhosphate-binding loopInduced fit mechanismRxxxR motifEvolutionary historyWalker BKinase familyPhylogenetic analysisSep-tRNARelated kinasesPSTKBiochemical characterizationSynthase convertsFit mechanismKinaseATPase activityPlasmodium speciesMotifActive siteSerHigh affinityDecreased activityArchaeaSepSecSSer18
2003
Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *
Rinehart J, Horn EK, Wei D, Söll D, Schneider A. Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *. Journal Of Biological Chemistry 2003, 279: 1161-1166. PMID: 14563839, DOI: 10.1074/jbc.m310100200.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseT. bruceiGln-tRNATrypanosoma bruceiInsect stage T. bruceiT. brucei enzymeRespective gene productsAminoacyl-tRNA synthetasesGlutamyl-tRNA synthetase activitySynthetase activityTransamidation pathwayLeishmania mitochondriaBrucei enzymeMitochondrial tRNAsGlu-tRNAProtein biosynthesisAminoacylation experimentsGene productsRNA interferenceTRNABruceiMitochondriaTotal tRNAGlutaminyl
2000
Domain-specific recruitment of amide amino acids for protein synthesis
Tumbula D, Becker H, Chang W, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000, 407: 106-110. PMID: 10993083, DOI: 10.1038/35024120.Peer-Reviewed Original ResearchMeSH KeywordsAmidesAmino AcidsArchaeaCloning, MolecularEscherichia coliMethanobacteriumNitrogenous Group TransferasesPeptide BiosynthesisProtein Structure, TertiaryRNA, Transfer, Amino AcylConceptsGlutaminyl-tRNA synthetaseAsparaginyl-tRNA synthetaseProtein synthesisAmino acidsAminoacyl-transfer RNAAmino acid metabolismGlu-tRNAGlnAsn-tRNAProtein biosynthesisGln-tRNAArchaeaTRNASynthetaseAmidotransferaseBacteriaAmidotransferasesDirect evidenceDifferent mechanismsBiosynthesisCentral importanceCrucial stepRNAOrganismsDomainCytoplasm
1997
tRNA-dependent amino acid transformations.
Curnow A, Hong K, Yuan R, Söll D. tRNA-dependent amino acid transformations. Nucleic Acids Symposium Series 1997, 2-4. PMID: 9478189.Peer-Reviewed Original ResearchMeSH KeywordsBacillus subtilisEscherichia coliModels, ChemicalNitrogenous Group TransferasesProtein Structure, TertiaryRNA, Bacterial
1996
Genetic analysis of functional connectivity between substrate recognition domains ofEscherichia coli glutaminyl-tRNA synthetase
Kitabatake M, Inokuchi H, Ibba M, Hong K, Söll D. Genetic analysis of functional connectivity between substrate recognition domains ofEscherichia coli glutaminyl-tRNA synthetase. Molecular Genetics And Genomics 1996, 252: 717-722. PMID: 8917315, DOI: 10.1007/bf02173978.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAmino Acyl-tRNA SynthetasesCatalysisEscherichia coliMutagenesis, Site-DirectedProtein Structure, TertiarySubstrate SpecificityConceptsGlutaminyl-tRNA synthetaseWild-type enzymeSubstrate discriminationDouble mutantSubstrate recognition domainThree-dimensional structureAnticodon recognitionSubstrate specificityTRNA bindingGenetic analysisAcceptor stemRecognition domainC171Ternary complexExtensive interactionsMutantsPotential involvementG mutationEnzymeHigh KmSynthetaseMutationsActive siteE222GlnR
1994
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNA
1993
Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
Schwob E, Söll D. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases. The EMBO Journal 1993, 12: 5201-8. PMID: 7505222, PMCID: PMC413784, DOI: 10.1002/j.1460-2075.1993.tb06215.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsBase SequenceBinding SitesBiological EvolutionEscherichia coliModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, Transfer, GlnRNA, Transfer, SerStructure-Activity RelationshipTransfer RNA AminoacylationConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesEscherichia coli glutaminyl-tRNA synthetaseClass I aminoacyl-tRNA synthetasesNew recognition specificitiesNon-catalytic domainSubstrate recognition propertiesNon-cognate tRNAsRecognition of tRNACommon ancestorSequence motifsAmber suppressorGenetic codeTRNA substratesCatalytic coreGlnRTRNARecognition specificityDistinct domainsEnzymatic activityElaborate relationshipSynthetasesSpecific roleClass ISynthetaseAcceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 2010-2014. PMID: 7680483, PMCID: PMC46010, DOI: 10.1073/pnas.90.5.2010.Peer-Reviewed Original ResearchConceptsAmber suppressor tRNASuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseAcceptor stemAccuracy of aminoacylationGlutaminyl-tRNA synthetaseWild-type enzymeNoncognate complexGlnR mutantTRNA specificityArg-130Amber mutationTransfer RNASuch mutantsMutant enzymesCritical residuesDomain contributesDomain interactionsRecognition specificityTRNAGlu-131MutantsNoncognate tRNAsGlnRCorrect aminoacylation