2001
Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding
Salazar J, Zuñiga R, Lefimil C, Söll D, Orellana O. Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding. FEBS Letters 2001, 491: 257-260. PMID: 11240138, DOI: 10.1016/s0014-5793(01)02214-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateBacterial ProteinsCloning, MolecularConserved SequenceDimerizationEscherichia coliGammaproteobacteriaGene ExpressionGenetic Complementation TestGeobacillus stearothermophilusMutagenesis, Site-DirectedRNA, TransferSequence Homology, Amino AcidStructure-Activity RelationshipTyrosineTyrosine-tRNA LigaseConceptsBacterial tyrosyl-tRNA synthetasesBacterial tyrosyl tRNA synthetaseConserved amino acidsAmino acidsAmino acid identityAmino-terminal regionActive site domainCarboxy-terminal segmentTyrosyl-tRNA synthetasesTyrosyl-tRNA synthetaseAcid identityLargest subfamilyCarboxy terminusSite domainTRNA bindingEnzyme functionTyr-AMPTRNATyrRSResiduesEquivalent roleBindingH306S356K395
2000
Ancient Adaptation of the Active Site of Tryptophanyl-tRNA Synthetase for Tryptophan Binding †
Ibba M, Stange-Thomann N, Kitabatake M, Ali K, Söll I, Carter, C, Michael Ibba, and, Söll D. Ancient Adaptation of the Active Site of Tryptophanyl-tRNA Synthetase for Tryptophan Binding †. Biochemistry 2000, 39: 13136-13143. PMID: 11052665, DOI: 10.1021/bi001512t.Peer-Reviewed Original ResearchMeSH KeywordsAcylationAnimalsBacillus subtilisBacterial ProteinsBinding SitesCattleDiphosphatesDNA Mutational AnalysisDNA, BacterialEvolution, MolecularGeobacillus stearothermophilusHumansKineticsMiceMutagenesis, Site-DirectedProtein BindingRabbitsRNA, Transfer, TrpSequence Homology, Amino AcidTryptophanTryptophan-tRNA LigaseTyrosineConceptsAmino acid specificityActive site residuesTyrosyl-tRNA synthetasesTryptophanyl-tRNA synthetaseAncient adaptationAnalogous residuesGlu side chainsTryptophan replacementHomologous positionsSystematic mutationAromatic side chainsTrpRSTryptophan recognitionBacillus stearothermophilusSide chainsTryptophan bindingTyrRSResiduesCommon originCompetitive inhibitorMutationsTrp bindingMechanistic supportCatalytic efficiencyActive siteCysteine Biosynthesis Pathway in the ArchaeonMethanosarcina barkeri Encoded by Acquired Bacterial Genes?
Kitabatake M, So M, Tumbula D, Söll D. Cysteine Biosynthesis Pathway in the ArchaeonMethanosarcina barkeri Encoded by Acquired Bacterial Genes? Journal Of Bacteriology 2000, 182: 143-145. PMID: 10613873, PMCID: PMC94250, DOI: 10.1128/jb.182.1.143-145.2000.Peer-Reviewed Original ResearchConceptsCysteine biosynthesis pathwayCysK geneCysteine biosynthesisBiosynthesis pathwayRecent genome dataOpen reading framePyrococcus sppCysE geneBacterial genesMethanococcus jannaschiiGenome dataArchaeoglobus fulgidusReading frameSulfolobus solfataricusThermoplasma acidophilumCysM geneMethanobacterium thermoautotrophicumGenesBiosynthesisPathwayGreat similaritySame functionCysKOrthologsArchaea
1994
Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNAA Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation
Leong-Morgenthaler P, Oliver S, Hottinger H, Söll D. A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation. Biochimie 1994, 76: 45-49. PMID: 8031904, DOI: 10.1016/0300-9084(94)90061-2.Peer-Reviewed Original ResearchConceptsNifS-like genesNifS-like proteinsNif gene productsNif proteinsNif genesGene productsNitrogen-fixing bacteriaGroup of enzymesRemarkable sequence homologyCysteine desulfuraseSequence conservationEfficient nitrogen fixationLeucine auxotrophyTransaminase BDiverse functionsSequence homologyNitrogen fixationEscherichia coli strainsProtein productsMetabolic pathwaysAzotobacter vinelandiiGenesB mutationsProteinDissimilar mutations
1993
Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
Schwob E, Söll D. Selection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases. The EMBO Journal 1993, 12: 5201-8. PMID: 7505222, PMCID: PMC413784, DOI: 10.1002/j.1460-2075.1993.tb06215.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsBase SequenceBinding SitesBiological EvolutionEscherichia coliModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, Transfer, GlnRNA, Transfer, SerStructure-Activity RelationshipTransfer RNA AminoacylationConceptsGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesEscherichia coli glutaminyl-tRNA synthetaseClass I aminoacyl-tRNA synthetasesNew recognition specificitiesNon-catalytic domainSubstrate recognition propertiesNon-cognate tRNAsRecognition of tRNACommon ancestorSequence motifsAmber suppressorGenetic codeTRNA substratesCatalytic coreGlnRTRNARecognition specificityDistinct domainsEnzymatic activityElaborate relationshipSynthetasesSpecific roleClass ISynthetaseAcceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 2010-2014. PMID: 7680483, PMCID: PMC46010, DOI: 10.1073/pnas.90.5.2010.Peer-Reviewed Original ResearchConceptsAmber suppressor tRNASuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseAcceptor stemAccuracy of aminoacylationGlutaminyl-tRNA synthetaseWild-type enzymeNoncognate complexGlnR mutantTRNA specificityArg-130Amber mutationTransfer RNASuch mutantsMutant enzymesCritical residuesDomain contributesDomain interactionsRecognition specificityTRNAGlu-131MutantsNoncognate tRNAsGlnRCorrect aminoacylationThe periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli
Verkamp E, Backman V, Björnsson J, Söll D, Eggertsson G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. Journal Of Bacteriology 1993, 175: 1452-1456. PMID: 8444807, PMCID: PMC193232, DOI: 10.1128/jb.175.5.1452-1456.1993.Peer-Reviewed Original ResearchConceptsDpp operonE. coli chromosomeEscherichia coliWild-type growthClasses of mutantsAbsence of ALAGenetic screenDpp mutationsColi chromosomeDpp transportALA biosynthesisFirst geneDipeptide transport systemAnaerobic growthChromosomal insertionOperonRecombinant plasmidTransport systemExogenous ALAALA uptakeE. coliNormal growthMutantsMutationsColi
1988
Misaminoacylation and transamidation are required for protein biosynthesis in lactobacillus bulgaricus
Schön A, Hottinger H, Söll D. Misaminoacylation and transamidation are required for protein biosynthesis in lactobacillus bulgaricus. Biochimie 1988, 70: 391-394. PMID: 3139057, DOI: 10.1016/0300-9084(88)90212-x.Peer-Reviewed Original Research
1979
Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase
Baer M, Low K, Söll D. Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase. Journal Of Bacteriology 1979, 139: 165-175. PMID: 378953, PMCID: PMC216842, DOI: 10.1128/jb.139.1.165-175.1979.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBacterial ProteinsEscherichia coliGenes, RegulatorMutationRNA, BacterialRNA, TransferValine-tRNA LigaseConceptsValyl-tRNA synthetaseAminoacyl-transfer ribonucleic acid synthetasesTransfer ribonucleic acidStructural geneProtein degradationEnzyme overproductionGenetic lociEscherichia coli strainsSpontaneous revertantsEscherichia coliThermolabile enzymeEnzyme synthesisSynthetaseNew enzyme synthesisColi strainsRibonucleic acidRevertantsTurnover rateSynthetasesMutantsBiosynthesisGenesLociColiEnzyme
1977
Suppression of a defective alanyl-tRNA synthetase in Escherichia coli: A compensatory mutation to high alanine affinity
Theall G, Low K, Söll D. Suppression of a defective alanyl-tRNA synthetase in Escherichia coli: A compensatory mutation to high alanine affinity. Molecular Genetics And Genomics 1977, 156: 221-227. PMID: 340903, DOI: 10.1007/bf00283495.Peer-Reviewed Original ResearchConceptsTemperature-resistant revertantsAlanyl-tRNA synthetaseResistant revertantsE. coli mapWild-type enzymeRibosomal proteinsStructural geneGene mapsSynthetase mutantsMutant enzymesParental enzymeCompensatory mutationsTemperature-sensitive characterEscherichia coliAdditional mutationsEnzymeRevertantsSynthetaseMutationsKm valuesAlanineRecAMutantsGenesAffinity
1969
Mechanism of protein biosynthesis.
Lengyel P, Söll D. Mechanism of protein biosynthesis. Microbiology And Molecular Biology Reviews 1969, 33: 264-301. PMID: 4896351, PMCID: PMC378322, DOI: 10.1128/br.33.2.264-301.1969.Peer-Reviewed Original Research
1968
Structure and function of Escherichia coli ribosomes II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle
Traub P, Söll D, Nomura M. Structure and function of Escherichia coli ribosomes II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle. Journal Of Molecular Biology 1968, 34: 595-608. PMID: 4938559, DOI: 10.1016/0022-2836(68)90183-6.Peer-Reviewed Original Research
1967
Studies on polynucleotides LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers
Ghosh H, Söll D, Khorana H. Studies on polynucleotides LXVII. Initiation of protein synthesis in vitro as studied by using ribopolynucleotides with repeating nucleotide sequences as messengers. Journal Of Molecular Biology 1967, 25: 275-298. PMID: 5340533, DOI: 10.1016/0022-2836(67)90142-8.Peer-Reviewed Original Research