1994
Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase
Weygand-Duraševic I, Rogers M, Söll D. Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase. Journal Of Molecular Biology 1994, 240: 111-118. PMID: 8027995, DOI: 10.1006/jmbi.1994.1425.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAnticodon recognitionMutant enzymesEscherichia coli glutaminyl-tRNA synthetaseOpal suppressor tRNASpecificity constantMutant gene productsWild-type enzymeAmino acid loopExtensive conformational changesActive siteNumber of mutationsSuppressor tRNAGene productsGlnRPathways of communicationSaturation mutagenesisTRNAAcceptor stemAcid loopGenetic selectionConformational changesAnticodonPoor substrateAminoacylationCoexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Journal Of Bacteriology 1994, 176: 232-239. PMID: 8282701, PMCID: PMC205035, DOI: 10.1128/jb.176.1.232-239.1994.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseEscherichia coliSerine tRNA geneE. coliConservation of determinantsTRNA genesSchizosaccharomyces pombePrimary transcriptPlasmid promoterAmber suppressionTRNA identityFunctional expressionColiCoexpressionSynthetasePombeGenesPromoterSuppressorTranscriptsOrganismsConservationExpressionEfficient suppressionA Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation
Leong-Morgenthaler P, Oliver S, Hottinger H, Söll D. A Lactobacillus nifS-like gene suppresses an Escherichia coli transaminase B mutation. Biochimie 1994, 76: 45-49. PMID: 8031904, DOI: 10.1016/0300-9084(94)90061-2.Peer-Reviewed Original ResearchConceptsNifS-like genesNifS-like proteinsNif gene productsNif proteinsNif genesGene productsNitrogen-fixing bacteriaGroup of enzymesRemarkable sequence homologyCysteine desulfuraseSequence conservationEfficient nitrogen fixationLeucine auxotrophyTransaminase BDiverse functionsSequence homologyNitrogen fixationEscherichia coli strainsProtein productsMetabolic pathwaysAzotobacter vinelandiiGenesB mutationsProteinDissimilar mutations
1992
Switching tRNA(Gln) identity from glutamine to tryptophan.
Rogers M, Adachi T, Inokuchi H, Söll D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 3463-3467. PMID: 1565639, PMCID: PMC48888, DOI: 10.1073/pnas.89.8.3463.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnticodonBase SequenceBeta-GalactosidaseCloning, MolecularEscherichia coliGenes, BacterialGenes, SuppressorGenes, SyntheticGlutamineMolecular Sequence DataMutagenesis, Site-DirectedNucleic Acid ConformationRNA, Transfer, GlnSuppression, GeneticTetrahydrofolate DehydrogenaseTryptophanConceptsOpal suppressorEscherichia coli glutaminyl-tRNA synthetaseAccuracy of aminoacylationGlutaminyl-tRNA synthetaseN-terminal sequence analysisEfficient suppressorYeast mitochondriaRespective tRNAsUCA anticodonAmber suppressorFol geneUGA codonUGA mutationsSequence analysisAlanine insertionAnticodonGenetic selectionBase pairsBase substitutionsSuppressorTRNATrpRSDihydrofolate reductasePosition 35Mutations
1990
Yeast suppressor mutations and transfer RNA processing
Nichols M, Willis I, Söll D. Yeast suppressor mutations and transfer RNA processing. Methods In Enzymology 1990, 181: 377-394. PMID: 2199758, DOI: 10.1016/0076-6879(90)81137-j.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceBlotting, NorthernChromosomes, FungalGenes, FungalIndicators and ReagentsMolecular Sequence DataMutationNucleic Acid ConformationNucleic Acid HybridizationRNA Polymerase IIIRNA Processing, Post-TranscriptionalRNA, TransferRNA, Transfer, SerSaccharomyces cerevisiaeSuppression, GeneticTranscription FactorsTranscription, GeneticConceptsTRNA genesMature-sized tRNAsRNA processing reactionsPrimer-directed mutagenesisAminoacyl-tRNA synthetaseTransfer RNA moleculesCognate aminoacyl-tRNA synthetaseRNA processingSuppressor mutationsTRNA locusElongation factorProtein biosynthesisRibosomal interactionsRNA moleculesMutant strainStructural proteinsPink coloniesTranscription efficiencyProcessing reactionsProtein synthesisSuppressor functionTRNALow template concentrationsGenesLoci
1989
A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes.
Willis I, Schmidt P, Söll D. A selection for mutants of the RNA polymerase III transcription apparatus: PCF1 stimulates transcription of tRNA and 5S RNA genes. The EMBO Journal 1989, 8: 4281-4288. PMID: 2686985, PMCID: PMC401634, DOI: 10.1002/j.1460-2075.1989.tb08614.x.Peer-Reviewed Original ResearchMeSH KeywordsBase SequenceCloning, MolecularDNA-Directed RNA PolymerasesGene ExpressionGenes, DominantGenes, FungalKineticsMolecular Sequence DataMutationOligonucleotide ProbesPlasmidsPromoter Regions, GeneticRNA Polymerase IIIRNA, RibosomalRNA, Ribosomal, 5SRNA, TransferSaccharomyces cerevisiaeSaccharomycetalesSchizosaccharomycesSelection, GeneticSuppression, GeneticTemplates, GeneticTranscription, GeneticConceptsTRNA genesMutant strainTranscription of mutantsTranscription of tRNARNA polymerase IIISuppressor tRNA geneDominant mutant geneWild-type strainStable complexesTranscription apparatusRNA genesStable complex formationUpstream geneTRNA suppressorsPositive regulatorSteady-state levelsComplex assemblyGenetic approachesPolymerase IIIGene transcriptionInternal promoterMutant geneTime-course experimentsTranscriptionGenesStructural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes
Perona J, Swanson R, Rould M, Steitz T, Söll D. Structural Basis for Misaminoacylation by Mutant E. coli Glutaminyl-tRNA Synthetase Enzymes. Science 1989, 246: 1152-1154. PMID: 2686030, DOI: 10.1126/science.2686030.Peer-Reviewed Original ResearchThe selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic
1988
Site-directed mutagenesis to fine-tune enzyme specificity
Uemura H, Rogers M, Swanson R, Watson L, Söll D. Site-directed mutagenesis to fine-tune enzyme specificity. Protein Engineering Design And Selection 1988, 2: 293-296. PMID: 3150543, DOI: 10.1093/protein/2.4.293.Peer-Reviewed Original ResearchConceptsOligonucleotide-directed mutagenesisEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionGlutaminyl-tRNA synthetaseAmino acid replacementsSite-directed mutagenesisAcid replacementsEnzyme specificitySingle residueMutagenesisSide chainsRepulsive charge-charge interactionsSpecific recognitionCharge-charge interactionsNucleic acidsMutantsProteinSupFSynthetaseResiduesGlutamineSelectionTransfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.
Eggertsson G, Söll D. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiology And Molecular Biology Reviews 1988, 52: 354-74. PMID: 3054467, PMCID: PMC373150, DOI: 10.1128/mr.52.3.354-374.1988.Peer-Reviewed Original Research
1986
Functional complementation between mutations in a yeast suppressor tRNA gene reveals potential for evolution of tRNA sequences.
Willis I, Nichols M, Chisholm V, Söll D, Heyer W, Szankasi P, Amstutz H, Munz P, Kohli J. Functional complementation between mutations in a yeast suppressor tRNA gene reveals potential for evolution of tRNA sequences. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 7860-7864. PMID: 3532123, PMCID: PMC386822, DOI: 10.1073/pnas.83.20.7860.Peer-Reviewed Original ResearchConceptsMutant tRNA precursorS. pombe genesSuppressor tRNA geneNucleotide sequence evolutionRNA processing levelRNase P cleavagePombe geneTRNA genesFunctional complementationComplementation eventsS. pombeCycle of inactivationTRNA sequencesTRNA precursorsSequence evolutionSaccharomyces cerevisiaeS. cerevisiaePombe strainSchizosaccharomyces pombe strainStructural domainsDifferential expressionSuppressor functionP cleavageGenesSuppressorA single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae.
Willis I, Frendewey D, Nichols M, Hottinger-Werlen A, Schaack J, Söll D. A single base change in the intron of a serine tRNA affects the rate of RNase P cleavage in vitro and suppressor activity in vivo in Saccharomyces cerevisiae. Journal Of Biological Chemistry 1986, 261: 5878-5885. PMID: 3516987, DOI: 10.1016/s0021-9258(17)38465-x.Peer-Reviewed Original ResearchInactivation of nonsense suppressor transfer RNA genes in Schizosaccharomyces pombe Intergenic conversion and hot spots of mutation
Heyer W, Münz P, Amstutz H, Aebi R, Gysler C, Schuchert P, Szankasi P, Leupold U, Kohli J, Gamulin V, Söll D. Inactivation of nonsense suppressor transfer RNA genes in Schizosaccharomyces pombe Intergenic conversion and hot spots of mutation. Journal Of Molecular Biology 1986, 188: 343-353. PMID: 3735426, DOI: 10.1016/0022-2836(86)90159-2.Peer-Reviewed Original ResearchMeSH KeywordsAllelesBase SequenceCrosses, GeneticGene ConversionGenes, FungalMutationRNA, FungalRNA, TransferSaccharomycetalesSchizosaccharomycesSuppression, GeneticConceptsTRNA genesSuppressor tRNA geneIntergenic conversionDNA sequencesTransfer RNA genesYeast Schizosaccharomyces pombeSerine tRNA geneCrosses of strainsSame molecular mechanismsConcerted evolutionRNA genesProgeny sporesSchizosaccharomyces pombeAllelic conversionDifferent chromosomesConversion eventsIntron sequencesSequence transferMolecular mechanismsMutation hot spotsSpontaneous mutationsVegetative cellsGenesPoint mutationsSuppressor activity
1985
Dimeric tRNA gene arrangement in Schizosaccharomyces pombe allows increased expression of the downstream gene
Hottinger-Werlen A, Schaack J, Lapointe J, Mao J, Nichols M, Söll D. Dimeric tRNA gene arrangement in Schizosaccharomyces pombe allows increased expression of the downstream gene. Nucleic Acids Research 1985, 13: 8739-8747. PMID: 3936021, PMCID: PMC318948, DOI: 10.1093/nar/13.24.8739.Peer-Reviewed Original ResearchConceptsTRNASer geneS. pombe genesDimeric arrangementPombe geneTRNA genesGene arrangementSchizosaccharomyces pombeSpecies genesMinor genesTranscription factorsDownstream genesTranscriptional efficiencyCompetitive abilityGenesMinor speciesMajor speciesSpeciesDimeric structureEfficient productionExpressionSchizosaccharomycesPombeTRNASerSaccharomycesSequenceFirst identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes
Krupp G, Thuriaux P, Willis I, Gamulin V, Söll D. First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes. Molecular Genetics And Genomics 1985, 201: 82-87. PMID: 3903436, DOI: 10.1007/bf00397990.Peer-Reviewed Original ResearchConceptsS. pombeAmber allelesAmber suppressor allelesFission yeast SchizosaccharomycesS. pombe transformantsAmber suppressor tRNANonsense mutationAmber nonsense mutationsSuppressor tRNA geneTRNA genesFission yeastYeast SchizosaccharomycesSchizosaccharomyces pombeSuppressor allelesTRP1 locusAmber mutationSuppressor tRNAPombeNonsense allelesNorthern analysisNitrosoguanidine mutagenesisOchre alleleGenesFirst identificationTRNASersupN ochre suppressor gene in Escherichia coli codes for tRNALys
Uemura H, Thorbjarnardóttir S, Gamulin V, Yano J, Andrésson O, Söll D, Eggertsson G. supN ochre suppressor gene in Escherichia coli codes for tRNALys. Journal Of Bacteriology 1985, 163: 1288-1289. PMID: 3897192, PMCID: PMC219277, DOI: 10.1128/jb.163.3.1288-1289.1985.Peer-Reviewed Original ResearchMeSH KeywordsAnticodonBase SequenceCloning, MolecularEscherichia coliGenes, BacterialRNA, Transfer, Amino AcylSuppression, GeneticMutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe.
Pearson D, Willis I, Hottinger H, Bell J, Kumar A, Leupold U, Söll D. Mutations preventing expression of sup3 tRNASer nonsense suppressors of Schizosaccharomyces pombe. Molecular And Cellular Biology 1985, 5: 808-815. PMID: 3921825, PMCID: PMC366785, DOI: 10.1128/mcb.5.4.808.Peer-Reviewed Original ResearchConceptsTRNA genesSchizosaccharomyces pombeGenomic clone bankEucaryotic tRNA genesTranscription control regionsIdentification of mutationsClone bankTRNA precursorsControl regionNonsense codonGenetic evidenceNonsense suppressorsRevertant allelesTranscriptional efficiencySaccharomyces cerevisiae extractSequence analysisSuppressor locusColony hybridizationMutational hotspotsPoint mutationsCerevisiae extractGenesPombeMutationsSplicingLeucine tRNA family of Escherichia coli: nucleotide sequence of the supP(Am) suppressor gene
Thorbjarnardóttir S, Dingermann T, Rafnar T, Andrésson O, Söll D, Eggertsson G. Leucine tRNA family of Escherichia coli: nucleotide sequence of the supP(Am) suppressor gene. Journal Of Bacteriology 1985, 161: 219-222. PMID: 2981802, PMCID: PMC214859, DOI: 10.1128/jb.161.1.219-222.1985.Peer-Reviewed Original ResearchConceptsSuppressor allelesLeuX geneAmber suppressor allelesMature coding sequenceLeucyl-tRNA synthetaseSingle base changeTRNA familiesCAA anticodonBox sequenceTermination signalDNA sequencesNucleotide sequenceBacteriophage T4Coding sequenceAminoacyl stemSuppressor geneLoop regionTRNABase changesEscherichia coliGenesE. coliSequenceColiAllelesEscherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2
Thorbjarnardóttir S, Uemura H, Dingermann T, Rafnar T, Thorsteinsdóttir S, Söll D, Eggertsson G. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. Journal Of Bacteriology 1985, 161: 207-211. PMID: 3155715, PMCID: PMC214857, DOI: 10.1128/jb.161.1.207-211.1985.Peer-Reviewed Original ResearchConceptsWild-type tRNASingle nucleotide changeWild-type sequenceCAA anticodonMissense suppressorMissense suppressionCUA anticodonDNA sequencesLeucine codonMutant formsInsertion of serineNucleotide changesSuppressor geneAnticodonTRNASupHTRNASer2Anticodon changeCodonSuppressorSequenceTRNASerCloningGenesSerine
1984
The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem
Sumner-Smith M, Hottinger H, Willis I, Koch T, Arentzen R, Söll D. The sup8 tRNALeu gene of Schizosaccharomyces pombe has an unusual intervening sequence and reduced pairing in the anticodon stem. Molecular Genetics And Genomics 1984, 197: 447-452. PMID: 6597338, DOI: 10.1007/bf00329941.Peer-Reviewed Original ResearchConceptsTRNA genesS. pombe DNAWild-type alleleAnticodon UCASplicing endonucleaseSuppressor allelesSchizosaccharomyces pombeTRNALeu geneUUA codonTrailer sequencesIntervening sequenceCell-free extractsAnticodon stemRelated sequencesSplice siteBase pairsSecondary structureGenesIsoacceptorsAllelesSequenceStructural requirementsPombeAnticodonSup8