2001
A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans
Salazar J, Zúñiga R, Raczniak G, Becker H, Söll D, Orellana O. A dual‐specific Glu‐tRNAGln and Asp‐tRNAAsn amidotransferase is involved in decoding glutamine and asparagine codons in Acidithiobacillus ferrooxidans. FEBS Letters 2001, 500: 129-131. PMID: 11445070, DOI: 10.1016/s0014-5793(01)02600-x.Peer-Reviewed Original ResearchConceptsOperon-like structureGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseA. ferrooxidansAsparaginyl-tRNA synthetaseTransamidation pathwayGat genesGlu-tRNAGlnBioleaching of mineralsAsn-tRNAAcidithiobacillus ferrooxidansGln-tRNAAsparagine codonsSynthetase enzymeBacillus subtilisAcidophilic bacteriumEscherichia coliBiochemical analysisAmidotransferaseSynthetaseGenes
1998
Major Identity Element of Glutamine tRNAs from Bacillus subtilis and Escherichia coli in the Reaction with B. subtilis Glutamyl-tRNA Synthetase
Kim S, Söll D. Major Identity Element of Glutamine tRNAs from Bacillus subtilis and Escherichia coli in the Reaction with B. subtilis Glutamyl-tRNA Synthetase. Molecules And Cells 1998, 8: 459-465. PMID: 9749534, DOI: 10.1016/s1016-8478(23)13451-0.Peer-Reviewed Original Research
1996
Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
Ibba M, Hong K, Sherman J, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 6953-6958. PMID: 8692925, PMCID: PMC38915, DOI: 10.1073/pnas.93.14.6953.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnimalsBase SequenceBinding SitesCalorimetryCloning, MolecularConsensus SequenceEscherichia coliHumansKineticsModels, StructuralMolecular Sequence DataNucleic Acid ConformationProtein FoldingRecombinant ProteinsRNA, Transfer, GlnSequence Homology, Nucleic AcidConceptsGlutaminyl-tRNA synthetaseAmino acid affinityAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseBase pairsIdentity nucleotidesProtein-RNA interactionsDiscriminator baseE. coli tryptophanyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAcid affinityRecognition sitesAbility of tRNATryptophanyl-tRNA synthetaseTRNA specificityNoncognate substratesTranslational fidelityTRNA recognitionBiochemical functionsRNA recognitionCognate tRNATRNAMajor binding siteNoncognate tRNAsHomologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging
Thomann H, Ibba M, Hong K, Söll D. Homologous Expression and Purification of Mutants of an Essential Protein by Reverse Epitope-Tagging. Bio/Technology 1996, 14: 50-55. PMID: 9636312, DOI: 10.1038/nbt0196-50.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAntibodies, MonoclonalAntibody SpecificityArtificial Gene FusionChromosome DeletionEpitopesEscherichia coliGenes, BacterialMutationPlasmidsSequence Homology, Nucleic AcidConceptsGlutaminyl-tRNA synthetaseMutant enzymesEssential enzymeGlutaminyl-tRNA synthetasesWild-type proteinExtrachromosomal genetic elementsEpitope taggingEssential proteinsMutant proteinsHomologous expressionReporter epitopeCell-free extractsGenetic elementsNormal phenotypeBiochemical studiesEnzymatic activityEnzymeProteinSynthetaseProtein contaminationExpressionPurificationMutantsSynthetasesNovel strategy
1994
Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis.
Ilag L, Kumar A, Söll D. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. The Plant Cell 1994, 6: 265-275. PMID: 7908550, PMCID: PMC160432, DOI: 10.1105/tpc.6.2.265.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceAminolevulinic AcidArabidopsisChlorophyllChloroplastsEscherichia coliGene Expression RegulationGenes, PlantGlutamatesGlutamic AcidIntramolecular TransferasesIsomerasesLightMolecular Sequence DataPromoter Regions, GeneticRNA, Transfer, GluSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsC5 pathwayAmino acid sequenceHemA proteinChlorophyll biosynthesisGlu-tRNAALA formationAcid sequenceRNA gel blot analysisDeduced amino acid sequenceGlu-tRNA reductaseChloroplasts of plantsGel blot analysisArabidopsis genesFunctional complementationShort intronsCorresponding genesTranscriptional controlFlower tissuesLight regulationExtensive homologyFirst enzymeUniversal precursorReductase geneChlorophyll formationSecond enzyme
1993
Molecular analysis of three maize 22 kDa auxin‐binding protein genes — transient promoter expression and regulatory regions
Schwob E, Choi S, Simmons C, Migliaccio F, Ilag L, Hesse T, Palme K, Söll D. Molecular analysis of three maize 22 kDa auxin‐binding protein genes — transient promoter expression and regulatory regions. The Plant Journal 1993, 4: 423-432. PMID: 7693132, DOI: 10.1046/j.1365-313x.1993.04030423.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceDNA, ComplementaryGene ExpressionGenes, PlantGenes, RegulatorGenes, ReporterIndoleacetic AcidsMolecular Sequence DataPlant Growth RegulatorsPlant ProteinsPromoter Regions, GeneticReceptors, Cell SurfaceRestriction MappingRNASequence DeletionSequence Homology, Amino AcidSequence Homology, Nucleic AcidTissue DistributionZea maysConceptsZm-ERabp1C-terminal KDEL sequenceSmall gene familyMolecular analysisPromoter deletion analysisMaize leaf protoplastsAuxin-binding proteinGene expression systemNegative regulatory sequencesPrimer extension analysisAuxin-binding siteGene-specific oligonucleotide probesTwofold higher expressionTransit peptideGene familySignal peptideLeaf protoplastsRegulatory sequencesTranscription startDeletion analysisTranscription factorsRegulatory regionsTATA boxKDEL sequencePromoter expressionSPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing
Kolman C, Söll D. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. Journal Of Bacteriology 1993, 175: 1433-1442. PMID: 8444805, PMCID: PMC193230, DOI: 10.1128/jb.175.5.1433-1442.1993.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBlotting, NorthernIntronsMolecular Sequence DataMutationNucleic Acid ConformationRNA Processing, Post-TranscriptionalRNA SplicingRNA, FungalRNA, TransferSaccharomyces cerevisiaeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsTRNA genesSaccharomyces cerevisiae genesMature suppressor tRNASuppressor tRNA geneOpen reading frameSaccharomyces cerevisiae mutationsCerevisiae genesTRNA splicingSuppression phenotypeTRNA processingChromosome IIIGenetic approachesSuppressor tRNAReading frameGenetic analysisNorthern analysisMutant selectionMutantsNonsense mutationGenesMutationsLEU2Cell levelIncreased synthesisNFS1
1992
Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression.
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Journal Of Biological Chemistry 1992, 267: 8275-8280. PMID: 1569081, DOI: 10.1016/s0021-9258(18)42438-6.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceBase SequenceChromatography, GelCyanobacteriaEscherichia coliGene ExpressionGenes, BacterialGenes, FungalGenetic Complementation TestMolecular Sequence DataOpen Reading FramesPlasmidsRestriction MappingSaccharomyces cerevisiaeSequence Homology, Nucleic AcidConceptsGlutamyl-tRNA reductaseHemA geneAmino acid sequenceHemA proteinGluTR activitySynechocystis 6803Acid sequenceE. coliGlutamate-1-semialdehyde aminotransferaseHemA gene productEscherichia coliCyanobacterium Synechocystis spOpen reading frameEnterobacterium Escherichia coliDNA sequence analysisFunctional complementationGene structureGlu-tRNAGel filtration experimentsPCC 6803Synechocystis spGlutamyl-tRNAAcid polypeptideReading frameALA formation
1990
Sequence of tRNAGlu and its genes from the chloroplast genome of Chlamydomonas reinhardtii
O'Neill G, Schön A, Chow H, Chen M, Kim Y, Söll D. Sequence of tRNAGlu and its genes from the chloroplast genome of Chlamydomonas reinhardtii. Nucleic Acids Research 1990, 18: 5893-5893. PMID: 2216788, PMCID: PMC332342, DOI: 10.1093/nar/18.19.5893.Peer-Reviewed Original ResearchBase SequenceChlamydomonasChloroplastsGenesMolecular Sequence DataMyosinsNucleic Acid ConformationRNA, Transfer, GluSequence Homology, Nucleic AcidSequence of a tRNA Gly from Streptomyces coelicolor
Rokem J, Schön A, Söll D. Sequence of a tRNA Gly from Streptomyces coelicolor. Nucleic Acids Research 1990, 18: 3988-3988. PMID: 2374719, PMCID: PMC331104, DOI: 10.1093/nar/18.13.3988.Peer-Reviewed Original Research
1986
The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA
Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara C, Söll D. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 1986, 322: 281-284. PMID: 3637637, DOI: 10.1038/322281a0.Peer-Reviewed Original ResearchConceptsΔ-aminolevulinatePeptide bond synthesisCognate amino acidMolecules of chlorophyllLow relative molecular massNucleotide sequence analysisRelative molecular massBond synthesisSubsequent reactionChlorophyll biosynthesisTransfer RNAUniversal precursorGlutamate tRNAAminoacyl bondSequence analysisNovel roleSerial affinity chromatographyMolecular massRNAAmino acidsComplete reactionBlue SepharoseAcceptor RNAReduction of glutamateReaction