2023
Mistranslation of the genetic code by a new family of bacterial transfer RNAs
Schuntermann D, Fischer J, Bile J, Gaier S, Shelley B, Awawdeh A, Jahn M, Hoffman K, Westhof E, Söll D, Clarke C, Vargas-Rodriguez O. Mistranslation of the genetic code by a new family of bacterial transfer RNAs. Journal Of Biological Chemistry 2023, 299: 104852. PMID: 37224963, PMCID: PMC10404621, DOI: 10.1016/j.jbc.2023.104852.Peer-Reviewed Original ResearchConceptsTransfer RNAsAmino acidsBacterial transfer RNAsUnfavorable environmental conditionsProlyl-tRNA synthetaseWrong amino acidPoor substrate specificitySubstrate discriminationGrowth defectTransfer RNAGenetic codePosttranslational modificationsProtein reporterTranslation factorsEnvironmental stressFunctional proteinsSubstrate specificityThreonine codonGenetic informationDistinct isoformsPro mutationAntibiotic carbenicillinEscherichia coliNovel familyEnvironmental conditionsSplit aminoacyl-tRNA synthetases for proximity-induced stop codon suppression
Jiang H, Ambrose N, Chung C, Wang Y, Söll D, Tharp J. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Proceedings Of The National Academy Of Sciences Of The United States Of America 2023, 120: e2219758120. PMID: 36787361, PMCID: PMC9974479, DOI: 10.1073/pnas.2219758120.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesCodon, TerminatorEscherichia coliHumansLigasesProtein BiosynthesisRNA, TransferConceptsAminoacyl-tRNA synthetasesCodon suppressionStop codon suppressionGene expressionOrthogonal aminoacyl-tRNA synthetasesRelevant protein-protein interactionsSynthetic biology toolsSmall molecule rapamycinControl gene expressionProtein-protein interactionsLevel of transcriptionAbscisic acidDimerization domainMammalian cellsBiology toolsGene translationTranslational levelMolecular switchStop codonHuman cellsMolecular inputsUseful biotechnologySynthetasesExpressionTherapeutic applications
2022
Ancestral archaea expanded the genetic code with pyrrolysine
Guo LT, Amikura K, Jiang HK, Mukai T, Fu X, Wang YS, O’Donoghue P, Söll D, Tharp JM. Ancestral archaea expanded the genetic code with pyrrolysine. Journal Of Biological Chemistry 2022, 298: 102521. PMID: 36152750, PMCID: PMC9630628, DOI: 10.1016/j.jbc.2022.102521.Peer-Reviewed Original ResearchConceptsAminoacylation efficiencyGenetic code expansionDomains of lifePyrrolysyl-tRNA synthetaseTRNA-binding domainFull-length enzymeNoncanonical amino acidsAmino acid substratesMolecular phylogenyDiverse archaeaCoevolutionary historyTRNA sequencesGenetic codeCode expansionDiscriminator basesMethanogenic archaeaMethanosarcina mazeiPylRSSubstrate spectrumTRNAArchaeaMultiple organismsLiving cellsAcid substratesAmino acidsUncovering translation roadblocks during the development of a synthetic tRNA
Prabhakar A, Krahn N, Zhang J, Vargas-Rodriguez O, Krupkin M, Fu Z, Acosta-Reyes FJ, Ge X, Choi J, Crnković A, Ehrenberg M, Puglisi EV, Söll D, Puglisi J. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Research 2022, 50: 10201-10211. PMID: 35882385, PMCID: PMC9561287, DOI: 10.1093/nar/gkac576.Peer-Reviewed Original ResearchMeSH KeywordsAmino AcidsAmino Acyl-tRNA SynthetasesNucleotidesProtein BiosynthesisRibosomesRNA, TransferSelenocysteineConceptsOrthogonal translation systemGenetic code expansionCode expansionTertiary interactionsNon-canonical amino acidsAminoacyl-tRNA substratesDomains of lifeAminoacyl-tRNA synthetaseTranslation systemSingle nucleotide mutationsSingle-molecule fluorescenceDistinct tRNAsNon-canonical structuresSelenocysteine insertionRibosomal translationTRNARibosomesSynthetic tRNANucleotide mutationsAmino acidsSame organismP siteOrganismsTranslocationTranslationThe tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism
Zhang H, Gong X, Zhao Q, Mukai T, Vargas-Rodriguez O, Zhang H, Zhang Y, Wassel P, Amikura K, Maupin-Furlow J, Ren Y, Xu X, Wolf YI, Makarova KS, Koonin EV, Shen Y, Söll D, Fu X. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Research 2022, 50: gkac271-. PMID: 35466371, PMCID: PMC9071458, DOI: 10.1093/nar/gkac271.Peer-Reviewed Original ResearchConceptsGenetic code expansionCode expansionDistinct non-canonical amino acidsOrthogonal aminoacyl-tRNA synthetase/tRNA pairsAminoacyl-tRNA synthetase/tRNA pairsPyrrolysyl-tRNA synthetase/Halophilic archaeon Haloferax volcaniiAdditional coding capacityDistinct noncanonical amino acidsNon-canonical amino acidsArchaeon Haloferax volcaniiDiscriminator baseAmino acidsPyrrolysyl-tRNA synthetaseNoncanonical amino acidsSite-specific incorporationMotif 2 loopSingle base changeDistinct tRNAsTRNA pairsHaloferax volcaniiUAA codonGenetic codeDiscriminator basesTRNA structureMeasuring the tolerance of the genetic code to altered codon size
DeBenedictis EA, Söll D, Esvelt KM. Measuring the tolerance of the genetic code to altered codon size. ELife 2022, 11: e76941. PMID: 35293861, PMCID: PMC9094753, DOI: 10.7554/elife.76941.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnticodonCodonEscherichia coliGenetic CodeProtein BiosynthesisRNA, TransferConceptsFour-base codonsGenetic codeTRNA mutationsAminoacyl-tRNA synthetasesQuadruplet codonsSingle amino acidCodon translationTriplet codonsTRNA synthetasesSynthetic biologistsCodonTRNAAmino acidsChemical alphabetsMutationsMass spectrometrySynthetasesAnticodonToleranceSynthetic systemsBiologistsTranslationEscherichiaNascent
2018
Transfer RNA function and evolution
O’Donoghue P, Ling J, Söll D. Transfer RNA function and evolution. RNA Biology 2018, 15: 423-426. PMID: 30099966, PMCID: PMC6103721, DOI: 10.1080/15476286.2018.1478942.Peer-Reviewed Original Research
2011
An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine
Su D, Lieberman A, Lang BF, Simonović M, Söll D, Ling J. An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Research 2011, 39: 4866-4874. PMID: 21321019, PMCID: PMC3113583, DOI: 10.1093/nar/gkr073.Peer-Reviewed Original ResearchConceptsCUN codonsYeast mitochondriaGenetic codeAlloacceptor tRNA gene recruitmentComprehensive phylogenetic analysisStandard genetic codeThreonyl-tRNA synthetaseHistidyl-tRNA synthetaseGene recruitmentEvolutionary originPhylogenetic analysisRecoding eventBiochemical experimentsFirst nucleotideAnticodon loopMST1CodonFirst clear exampleYeastMitochondriaThreonineSynthetaseCandida albicansGenomeClear example
2009
A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea
Randau L, Stanley BJ, Kohlway A, Mechta S, Xiong Y, Söll D. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea. Science 2009, 324: 657-659. PMID: 19407206, PMCID: PMC2857566, DOI: 10.1126/science.1170123.Peer-Reviewed Original ResearchConceptsTransfer RNAArchaeon Methanopyrus kandleriTertiary coreCytidine deaminase domainsTRNA genesTransfer RNAsTHUMP domainProper foldingU editingC deaminationMethanopyrus kandleriTRNA tertiary structureDeaminase domainTertiary structureTRNA tertiary corePosition 8Cytidine deaminaseUnique familyArchaeaRNAsGenesRNAFoldingDomainCrystal structure
2008
Life without RNase P
Randau L, Schröder I, Söll D. Life without RNase P. Nature 2008, 453: 120-123. PMID: 18451863, DOI: 10.1038/nature06833.Peer-Reviewed Original Research
2003
Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *
Rinehart J, Horn EK, Wei D, Söll D, Schneider A. Non-canonical Eukaryotic Glutaminyl- and Glutamyl-tRNA Synthetases Form Mitochondrial Aminoacyl-tRNA in Trypanosoma brucei *. Journal Of Biological Chemistry 2003, 279: 1161-1166. PMID: 14563839, DOI: 10.1074/jbc.m310100200.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlutamyl-tRNA synthetaseT. bruceiGln-tRNATrypanosoma bruceiInsect stage T. bruceiT. brucei enzymeRespective gene productsAminoacyl-tRNA synthetasesGlutamyl-tRNA synthetase activitySynthetase activityTransamidation pathwayLeishmania mitochondriaBrucei enzymeMitochondrial tRNAsGlu-tRNAProtein biosynthesisAminoacylation experimentsGene productsRNA interferenceTRNABruceiMitochondriaTotal tRNAGlutaminyl
2002
A one‐step method for in vitro production of tRNA transcripts
Korencić D, Söll D, Ambrogelly A. A one‐step method for in vitro production of tRNA transcripts. Nucleic Acids Research 2002, 30: e105-e105. PMID: 12384607, PMCID: PMC137149, DOI: 10.1093/nar/gnf104.Peer-Reviewed Original ResearchConceptsTRNA transcriptsT7 RNA polymeraseLarge-scale plasmid preparationTRNA genesMicrobial genomesTRNA functionsDNA promoterRNA polymeraseRNA moleculesT7 promoterBiochemical characterizationTranscription templateDNA templateNew enzymeTranscriptsLarge oligonucleotidesTranscriptionGood substratePromoterShort oligonucleotidesEnzymatic digestionRapid productionPlasmid preparationsGenomeOligonucleotide
2001
Post-transcriptional modification in archaeal tRNAs: identities and phylogenetic relations of nucleotides from mesophilic and hyperthermophilic Methanococcales
McCloskey J, Graham D, Zhou S, Crain P, Ibba M, Konisky J, Söll D, Olsen G. Post-transcriptional modification in archaeal tRNAs: identities and phylogenetic relations of nucleotides from mesophilic and hyperthermophilic Methanococcales. Nucleic Acids Research 2001, 29: 4699-4706. PMID: 11713320, PMCID: PMC92529, DOI: 10.1093/nar/29.22.4699.Peer-Reviewed Original ResearchConceptsPost-transcriptional modificationsSmall ribosomal subunit RNA sequencesRibose-methylated nucleosidesClose phylogenetic relationshipArchaeal RNAArchaeal tRNAsPhylogenetic relationshipsMethanococcus jannaschiiMethanococcus maripaludisTransfer RNAPhylogenetic relationsBacterial tRNAsMethanococcus vannieliiPosition 37Methanococcus igneusModification differencesModification patternsTRNAMethanococcus thermolithotrophicusRNA sequencesRNATemperature of growthUnknown structureFamily membersEukaryaConserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding
Salazar J, Zuñiga R, Lefimil C, Söll D, Orellana O. Conserved amino acids near the carboxy terminus of bacterial tyrosyl‐tRNA synthetase are involved in tRNA and Tyr‐AMP binding. FEBS Letters 2001, 491: 257-260. PMID: 11240138, DOI: 10.1016/s0014-5793(01)02214-1.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine MonophosphateBacterial ProteinsCloning, MolecularConserved SequenceDimerizationEscherichia coliGammaproteobacteriaGene ExpressionGenetic Complementation TestGeobacillus stearothermophilusMutagenesis, Site-DirectedRNA, TransferSequence Homology, Amino AcidStructure-Activity RelationshipTyrosineTyrosine-tRNA LigaseConceptsBacterial tyrosyl-tRNA synthetasesBacterial tyrosyl tRNA synthetaseConserved amino acidsAmino acidsAmino acid identityAmino-terminal regionActive site domainCarboxy-terminal segmentTyrosyl-tRNA synthetasesTyrosyl-tRNA synthetaseAcid identityLargest subfamilyCarboxy terminusSite domainTRNA bindingEnzyme functionTyr-AMPTRNATyrRSResiduesEquivalent roleBindingH306S356K395Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use
Raczniak G, Ibba M, Söll D. Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use. Toxicology 2001, 160: 181-189. PMID: 11246138, DOI: 10.1016/s0300-483x(00)00454-6.Peer-Reviewed Original ResearchConceptsComplete microbial genome sequencesMicrobial genome sequencesFundamental biological processesPathogen-specific pathwaysAminoacyl-tRNA synthesisGenome sequenceBiochemical approachesMammalian hostsIdentification of targetsBiological processesNumber of pathogensProtein synthesisPharmaceutical exploitationSynthesis pathwayCertain pathwaysNovel targetPathogenic bacteriaEnzyme presentPathwayDiagnostic targetsCell viabilityKey processesGenomicsRecent advancesTarget
2000
Transfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo
Kim H, Kim I, Söll D, Lee Y. Transfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo. Molecules And Cells 2000, 10: 76-82. PMID: 10774751, DOI: 10.1007/s10059-000-0076-7.Peer-Reviewed Original ResearchConceptsMutant tRNA genesMutant tRNAsTRNA genesAnticodon sequenceAnticodon mutantsHost viabilityE. coliAmino acidsMost aminoacyl-tRNA synthetasesOpal stop codonAminoacyl-tRNA synthetasesSite-directed mutagenesisE. coli tRNAMajor recognition elementAnticodon variantsSuch tRNAsTRNAStop codonAminoacylation specificityAnticodonSimilarity dendrogramVivo evolutionGenesAcceptor specificityAnticodon change
1999
Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma
Tumbula D, Vothknecht U, Kim H, Ibba M, Min B, Li T, Pelaschier J, Stathopoulos C, Becker H, Söll D. Archaeal Aminoacyl-tRNA Synthesis: Diversity Replaces Dogma. Genetics 1999, 152: 1269-1276. PMID: 10430557, PMCID: PMC1460689, DOI: 10.1093/genetics/152.4.1269.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthesisGene transfer eventsPhenylalanyl-tRNA synthetasesLysyl-tRNA synthetaseTransamidation pathwayExtant organismsMethanococcus jannaschiiAsparaginyl-tRNAProtein biosynthesisGenetic codeGene expressionGenome sequencingAminoacyl-tRNAArchaeaMethanobacterium thermoautotrophicumMolecular biologyUnexpected levelNovel pathwayTransfer eventsFaithful translationPathwayJannaschiiSynthetasesBiosynthesisOrganisms
1998
Sequence Divergence of Seryl-tRNA Synthetases in Archaea
Kim H, Vothknecht U, Hedderich R, Celic I, Söll D. Sequence Divergence of Seryl-tRNA Synthetases in Archaea. Journal Of Bacteriology 1998, 180: 6446-6449. PMID: 9851985, PMCID: PMC107743, DOI: 10.1128/jb.180.24.6446-6449.1998.Peer-Reviewed Original ResearchConceptsOpen reading frameM. thermoautotrophicumRelevant open reading frameSeryl-tRNA synthetasesCys-tRNACysCanonical cysteinyl-tRNA synthetaseGel shift experimentsCysteinyl-tRNA synthetaseN-terminal peptide sequenceEscherichia coli tRNASequence divergenceDirect aminoacylationM. jannaschiiMethanococcus jannaschiiGenomic sequencesReading frameSer geneHomologous tRNAsGenomic dataMethanogenic archaeaMethanobacterium thermoautotrophicumShift experimentsEnzymatic propertiesArchaeaSerine
1997
Glutamyl-tRNA sythetase.
Freist W, Gauss D, Söll D, Lapointe J. Glutamyl-tRNA sythetase. Biological Chemistry 1997, 378: 1313-29. PMID: 9426192.Peer-Reviewed Original ResearchConceptsGlutamyl-tRNA synthetaseGlutaminyl-tRNA synthetaseAminoacyl-tRNA synthetasesNegative eubacteriaBacterial glutamyl-tRNA synthetasesATP/PPiHigh molecular mass complexesClass I aminoacyl-tRNA synthetasesCytoplasm of eukaryotesE. coli GlnRSGlutamyl-tRNA synthetasesMolecular mass complexesN-terminal halfC-terminal halfAmino acid residuesDihydrouridine (DHU) armPhylogenetic studiesSpecific amidotransferaseGlutamyl-prolylMass complexesTRNA synthetasesCognate tRNAAcid residuesAcceptor stemSynthetasesWhen protein engineering confronts the tRNA world
Schimmel P, Söll D. When protein engineering confronts the tRNA world. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 10007-10009. PMID: 9294151, PMCID: PMC33764, DOI: 10.1073/pnas.94.19.10007.Peer-Reviewed Original Research