2000
The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln
Becker H, Min B, Jacobi C, Raczniak G, Pelaschier J, Roy H, Klein S, Kern D, Söll D. The heterotrimeric Thermus thermophilus Asp‐tRNAAsn amidotransferase can also generate Gln‐tRNAGln. FEBS Letters 2000, 476: 140-144. PMID: 10913601, DOI: 10.1016/s0014-5793(00)01697-5.Peer-Reviewed Original Research
1997
Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
Curnow A, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin T, Söll D. Glu-tRNAGln amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proceedings Of The National Academy Of Sciences Of The United States Of America 1997, 94: 11819-11826. PMID: 9342321, PMCID: PMC23611, DOI: 10.1073/pnas.94.22.11819.Peer-Reviewed Original ResearchConceptsTranscriptional unitsGln-tRNAGlnGram-positive eubacteriaHeterotrimeric enzymeGlu-tRNAGlnTranslational apparatusHeterotrimeric proteinGlutamine codonB. subtilisAmidotransferaseSynthetase activityOnly pathwayEnzymeGlutamylEssential componentArchaeaTransamidationEubacteriaOperonCyanobacteriaGATCOrganellesCodonGenesGATA
1996
Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
Ibba M, Hong K, Sherman J, Sever S, Söll D. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 6953-6958. PMID: 8692925, PMCID: PMC38915, DOI: 10.1073/pnas.93.14.6953.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnimalsBase SequenceBinding SitesCalorimetryCloning, MolecularConsensus SequenceEscherichia coliHumansKineticsModels, StructuralMolecular Sequence DataNucleic Acid ConformationProtein FoldingRecombinant ProteinsRNA, Transfer, GlnSequence Homology, Nucleic AcidConceptsGlutaminyl-tRNA synthetaseAmino acid affinityAmino acid recognitionEscherichia coli glutaminyl-tRNA synthetaseBase pairsIdentity nucleotidesProtein-RNA interactionsDiscriminator baseE. coli tryptophanyl-tRNA synthetaseAminoacyl-tRNA synthetasesSequence-specific interactionsAcid affinityRecognition sitesAbility of tRNATryptophanyl-tRNA synthetaseTRNA specificityNoncognate substratesTranslational fidelityTRNA recognitionBiochemical functionsRNA recognitionCognate tRNATRNAMajor binding siteNoncognate tRNAsEscherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †
Sever S, Rogers K, Rogers M, Carter C, Söll D. Escherichia coli Tryptophanyl-tRNA Synthetase Mutants Selected for Tryptophan Auxotrophy Implicate the Dimer Interface in Optimizing Amino Acid Binding †. Biochemistry 1996, 35: 32-40. PMID: 8555191, DOI: 10.1021/bi952103d.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBacillus subtilisBase SequenceBinding SitesCloning, MolecularDNA PrimersEscherichia coliGenes, BacterialGeobacillus stearothermophilusHaemophilus influenzaeKineticsMacromolecular SubstancesModels, MolecularMolecular Sequence DataPolymerase Chain ReactionProtein FoldingProtein Structure, SecondaryRecombinant ProteinsRestriction MappingSequence Homology, Amino AcidTryptophanTryptophan-tRNA LigaseConceptsTryptophanyl-tRNA synthetaseDimer interfaceClass I aminoacyl-tRNA synthetasesAminoacyl-tRNA synthetasesAmino acid bindingAmino acid activationActive siteSteady-state kinetic analysisSynthetase mutantsRossmann foldApparent KmKMSKS loopTrp lociProtein structureTrpR proteinTryptophan auxotrophDimeric enzymeAuxotrophic strainsBacillus stearothermophilusAcid bindingEscherichia coliOptimal catalysisAminoacyl adenylatesMutantsMutations
1993
Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoterAcceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 2010-2014. PMID: 7680483, PMCID: PMC46010, DOI: 10.1073/pnas.90.5.2010.Peer-Reviewed Original ResearchConceptsAmber suppressor tRNASuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseAcceptor stemAccuracy of aminoacylationGlutaminyl-tRNA synthetaseWild-type enzymeNoncognate complexGlnR mutantTRNA specificityArg-130Amber mutationTransfer RNASuch mutantsMutant enzymesCritical residuesDomain contributesDomain interactionsRecognition specificityTRNAGlu-131MutantsNoncognate tRNAsGlnRCorrect aminoacylation
1988
Site-directed mutagenesis to fine-tune enzyme specificity
Uemura H, Rogers M, Swanson R, Watson L, Söll D. Site-directed mutagenesis to fine-tune enzyme specificity. Protein Engineering Design And Selection 1988, 2: 293-296. PMID: 3150543, DOI: 10.1093/protein/2.4.293.Peer-Reviewed Original ResearchConceptsOligonucleotide-directed mutagenesisEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionGlutaminyl-tRNA synthetaseAmino acid replacementsSite-directed mutagenesisAcid replacementsEnzyme specificitySingle residueMutagenesisSide chainsRepulsive charge-charge interactionsSpecific recognitionCharge-charge interactionsNucleic acidsMutantsProteinSupFSynthetaseResiduesGlutamineSelection