2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
1994
Transfer RNA in Its Fourth Decade
RajBhandary U, Söll D. Transfer RNA in Its Fourth Decade. 1994, 1-4. DOI: 10.1128/9781555818333.ch1.Peer-Reviewed Original ResearchConnecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase
Weygand-Duraševic I, Rogers M, Söll D. Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase. Journal Of Molecular Biology 1994, 240: 111-118. PMID: 8027995, DOI: 10.1006/jmbi.1994.1425.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAnticodon recognitionMutant enzymesEscherichia coli glutaminyl-tRNA synthetaseOpal suppressor tRNASpecificity constantMutant gene productsWild-type enzymeAmino acid loopExtensive conformational changesActive siteNumber of mutationsSuppressor tRNAGene productsGlnRPathways of communicationSaturation mutagenesisTRNAAcceptor stemAcid loopGenetic selectionConformational changesAnticodonPoor substrateAminoacylation
1993
Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
Weygand-Durasević I, Schwob E, Söll D. Acceptor end binding domain interactions ensure correct aminoacylation of transfer RNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1993, 90: 2010-2014. PMID: 7680483, PMCID: PMC46010, DOI: 10.1073/pnas.90.5.2010.Peer-Reviewed Original ResearchConceptsAmber suppressor tRNASuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseAcceptor stemAccuracy of aminoacylationGlutaminyl-tRNA synthetaseWild-type enzymeNoncognate complexGlnR mutantTRNA specificityArg-130Amber mutationTransfer RNASuch mutantsMutant enzymesCritical residuesDomain contributesDomain interactionsRecognition specificityTRNAGlu-131MutantsNoncognate tRNAsGlnRCorrect aminoacylationSPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing
Kolman C, Söll D. SPL1-1, a Saccharomyces cerevisiae mutation affecting tRNA splicing. Journal Of Bacteriology 1993, 175: 1433-1442. PMID: 8444805, PMCID: PMC193230, DOI: 10.1128/jb.175.5.1433-1442.1993.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceBase SequenceBlotting, NorthernIntronsMolecular Sequence DataMutationNucleic Acid ConformationRNA Processing, Post-TranscriptionalRNA SplicingRNA, FungalRNA, TransferSaccharomyces cerevisiaeSequence Homology, Amino AcidSequence Homology, Nucleic AcidTranscription, GeneticConceptsTRNA genesSaccharomyces cerevisiae genesMature suppressor tRNASuppressor tRNA geneOpen reading frameSaccharomyces cerevisiae mutationsCerevisiae genesTRNA splicingSuppression phenotypeTRNA processingChromosome IIIGenetic approachesSuppressor tRNAReading frameGenetic analysisNorthern analysisMutant selectionMutantsNonsense mutationGenesMutationsLEU2Cell levelIncreased synthesisNFS1Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase
Rogers M, Weygand-Durašević I, Schwob E, Sherman J, Rogers K, Adachi T, Inokuchi H, Söll D. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase. Biochimie 1993, 75: 1083-1090. PMID: 8199243, DOI: 10.1016/0300-9084(93)90007-f.Peer-Reviewed Original ResearchConceptsOpal suppressor tRNAGlutaminyl-tRNA synthetaseAcceptor stem recognitionSuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionAmber suppressor tRNAExtensive mutational analysisRecognition of tRNARNA contactsTRNA transcriptsRelaxed specificityMutational analysisTRNAGlnRAcceptor stemExtensive proteinIndividual functional groupsMutantsSpecific recognitionAnticodonAminoacylationSynthetaseIdentity elementSynthetases
1990
Introduction and Overview
Söll D. Introduction and Overview. Journal Of Chromatography Library 1990, 45: b1-b11. DOI: 10.1016/s0301-4770(08)61486-4.Peer-Reviewed Original ResearchDifferent amino acid specificitiesUse of UGAAmino acid specificityStandard genetic codeAmber suppressor tRNAVariety of organismsT7 RNA polymeraseGel sequencing methodsTRNA genesAmber mutantsGenetic codeRNA polymeraseSense codonsSuppressor tRNABiophysical instrumentationRelevant genesRNA fieldRNA sequencesSequence analysisDifferent suppressorsMolecular biologyCertain organismsTRNASequencing methodsGenes
1989
The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification
Schön A, Böck A, Ott G, Sprinzl M, Söll D. The selenocysteine-inserting opal suppressor serine tRNA from E.coli is highly unusual in structure and modification. Nucleic Acids Research 1989, 17: 7159-7165. PMID: 2529478, PMCID: PMC334795, DOI: 10.1093/nar/17.18.7159.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesBase SequenceChromatography, High Pressure LiquidCodonCysteineEscherichia coliGenes, BacterialMolecular Sequence DataNucleic Acid ConformationRNA, Transfer, Amino Acid-SpecificRNA, Transfer, SerSeleniumSelenocysteineStructure-Activity RelationshipSuppression, Genetic
1988
Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA.
Rogers M, Söll D. Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1988, 85: 6627-6631. PMID: 3045821, PMCID: PMC282030, DOI: 10.1073/pnas.85.18.6627.Peer-Reviewed Original Research
1985
First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes
Krupp G, Thuriaux P, Willis I, Gamulin V, Söll D. First identification of an amber nonsense mutation in Schizosaccharomyces pombe: major differences in the efficiency of homologous versus heterologous yeast suppressor tRNA genes. Molecular Genetics And Genomics 1985, 201: 82-87. PMID: 3903436, DOI: 10.1007/bf00397990.Peer-Reviewed Original ResearchConceptsS. pombeAmber allelesAmber suppressor allelesFission yeast SchizosaccharomycesS. pombe transformantsAmber suppressor tRNANonsense mutationAmber nonsense mutationsSuppressor tRNA geneTRNA genesFission yeastYeast SchizosaccharomycesSchizosaccharomyces pombeSuppressor allelesTRP1 locusAmber mutationSuppressor tRNAPombeNonsense allelesNorthern analysisNitrosoguanidine mutagenesisOchre alleleGenesFirst identificationTRNASersupN ochre suppressor gene in Escherichia coli codes for tRNALys
Uemura H, Thorbjarnardóttir S, Gamulin V, Yano J, Andrésson O, Söll D, Eggertsson G. supN ochre suppressor gene in Escherichia coli codes for tRNALys. Journal Of Bacteriology 1985, 163: 1288-1289. PMID: 3897192, PMCID: PMC219277, DOI: 10.1128/jb.163.3.1288-1289.1985.Peer-Reviewed Original Research
1984
Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase.
Inokuchi H, Hoben P, Yamao F, Ozeki H, Söll D. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1984, 81: 5076-5080. PMID: 6382258, PMCID: PMC391640, DOI: 10.1073/pnas.81.16.5076.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseGlnS geneEscherichia coli glutaminyl-tRNA synthetaseAminoacyl-tRNA synthetase genesEarlier genetic studiesAmber suppressor tRNAWild-type enzymeSynthetase geneTRNA speciesAmber anticodonAmber mutationMutant tRNAsSuppressor tRNAGene productsAltered specificityGln mutantMutant geneTransducing phageEnzyme structureGenetic studiesTRNAGenesMischargingBiochemical meansAminoacylation reaction
1979
Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs.
Kohli J, Kwong T, Altruda F, Söll D, Wahl G. Characterization of a UGA-suppressing serine tRNA from Schizosaccharomyces pombe with the help of a new in vitro assay system for eukaryotic suppressor tRNAs. Journal Of Biological Chemistry 1979, 254: 1546-1551. PMID: 762155, DOI: 10.1016/s0021-9258(17)37806-7.Peer-Reviewed Original ResearchConceptsOpal suppressor tRNASuppressor tRNAReadthrough productSchizosaccharomyces pombeFission yeast Schizosaccharomyces pombeYeast Schizosaccharomyces pombeOchre suppressor tRNAUGA termination codonBeta-globin mRNARabbit beta-globin mRNARabbit globin mRNAWheat germ extractSuppressor mutantsS. pombeNonsense suppressionPure tRNAsAlpha-globinSerine tRNATermination codonGlobin mRNATRNAPombeGerm extractSerineAssay systemIdentification and nucleotide sequence of the sup8-e UGA-suppressor leucine tRNA from Schizosaccharomyces pombe
Wetzel R, Kohli J, Altruda F, Söll D. Identification and nucleotide sequence of the sup8-e UGA-suppressor leucine tRNA from Schizosaccharomyces pombe. Molecular Genetics And Genomics 1979, 172: 221-228. PMID: 289895, DOI: 10.1007/bf00268286.Peer-Reviewed Original ResearchConceptsSuppressor tRNANucleotide sequenceTwo-dimensional gel electrophoresisS. pombe strainRabbit globin mRNAGel sequencing methodsWheat germ extractUGA suppressor tRNASchizosaccharomyces pombeAnticodon sequenceUGA codonOpal suppressionPombe strainGlobin mRNAC-AOHTRNALeucine tRNAGerm extractAnticodon loopSequencing methodsG-m5CGel electrophoresisSequenceSuppressor assaysSchizosaccharomyces
1971
Purification of an Escherichia coli Leucine Suppressor Transfer Ribonucleic Acid and Its Aminoacylation by the Homologous Leucyl-Transfer Ribonucleic Acid Synthetase
Hayashi H, Söll D. Purification of an Escherichia coli Leucine Suppressor Transfer Ribonucleic Acid and Its Aminoacylation by the Homologous Leucyl-Transfer Ribonucleic Acid Synthetase. Journal Of Biological Chemistry 1971, 246: 4951-4954. PMID: 4941862, DOI: 10.1016/s0021-9258(18)61955-6.Peer-Reviewed Original ResearchMeSH KeywordsAcylationBenzoatesBiological AssayCarbon IsotopesChromatography, DEAE-CelluloseColiphagesEscherichia coliGenetics, MicrobialKineticsLeucineLigasesMutationPeptide BiosynthesisPlant Growth RegulatorsPlants, ToxicPolynucleotidesRNA, TransferSuppression, GeneticTemplates, GeneticTobaccoValine
1968
Studies on polynucleotides LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression
Söll D. Studies on polynucleotides LXXXV. Partial purification of an amber supressor tRNA and studies on in vitro suppression. Journal Of Molecular Biology 1968, 34: 175-187. PMID: 4938541, DOI: 10.1016/0022-2836(68)90243-x.Peer-Reviewed Original ResearchConceptsSuppressor tRNAColi cellsAmber suppressor genesAmber suppressor tRNAProtein synthesis experimentsEscherichia coli cellsE. coli cellsAmber mutantsTRNASuppressor geneProtein synthesisCrude tRNAGenesRNAPartial purificationBacteriophage f2CellsMutantsRibosomesUAGSpeciesMessengerSuppressionChain terminationBinding