2023
Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids
Jiang H, Weng J, Wang Y, Tsou J, Chen P, Ko A, Söll D, Tsai M, Wang Y. Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids. Frontiers In Genetics 2023, 14: 1277489. PMID: 37904728, PMCID: PMC10613524, DOI: 10.3389/fgene.2023.1277489.Peer-Reviewed Original ResearchUnique biophysical propertiesTree of lifeAmino acidsSuperfolder green fluorescent proteinGreen fluorescent proteinSubstrate polyspecificityTranslational machinerySynthetic biologistsSmall proteinsFluorescent proteinPhysiological roleRibosomal synthesisProteinBiophysical propertiesKinetic assaysHuman heavy chain ferritinHeavy-chain ferritinPylRSTRNAMutantsAminoacylationPeptidesBiologistsPhysiochemical propertiesMachinery
2020
Initiation of Protein Synthesis with Non‐Canonical Amino Acids In Vivo
Tharp J, Ad O, Amikura K, Ward F, Garcia E, Cate J, Schepartz A, Söll D. Initiation of Protein Synthesis with Non‐Canonical Amino Acids In Vivo. Angewandte Chemie 2020, 132: 3146-3150. DOI: 10.1002/ange.201914671.Peer-Reviewed Original ResearchNon-canonical amino acidsDistinct non-canonical amino acidsE. coli translational machineryAmino acidsNon-canonical initiationTRNA fMetTranslational machineryInitiator tRNASynthetic biologyE. coli strainsProtein synthesisDiverse sidechainsColi strainsFMetRemarkable versatilityVivoInitial stepSecond positionGenomeTyrRSTRNARedundant copiesMachineryBiologyPolypeptide
2008
Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality
Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O. Pyrrolysyl-tRNA synthetase–tRNAPyl structure reveals the molecular basis of orthogonality. Nature 2008, 457: 1163-1167. PMID: 19118381, PMCID: PMC2648862, DOI: 10.1038/nature07611.Peer-Reviewed Original ResearchConceptsAmino acidsMolecular basisLast universal common ancestorUniversal common ancestorUAG stop codonProteinogenic amino acidsCommon ancestorSuppressor tRNAStop codonDesulfitobacterium hafnienseStandard amino acidsTRNADistinct interactionsProteinPyrrolysinePylRSSelenocysteineAncestorCodonMachineryAcidVivoPairs
2004
Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem?
Ambrogelly A, Kamtekar S, Sauerwald A, Ruan B, Tumbula-Hansen D, Kennedy D, Ahel I, Söll D. Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem? Cellular And Molecular Life Sciences 2004, 61: 2437-2445. PMID: 15526152, DOI: 10.1007/s00018-004-4194-9.Peer-Reviewed Original ResearchConceptsMethanogenic archaeaCysteine biosynthesisCellular translation machineryAminoacyl-tRNA synthesisCanonical cysteinyl-tRNA synthetaseAminoacyl-tRNA synthetasesCysteinyl-tRNA synthetaseRecognizable genesTranslation machineryGenome sequenceArchaeaBiosynthesisEssential componentSynthetasesTRNARibosomesGenesMachineryOrganismsSynthetasePossible linkSequenceFormation
1974
15. Aminoacyl-tRNA Synthetases
Söll D, Schimmel P. 15. Aminoacyl-tRNA Synthetases. The Enzymes 1974, 10: 489-538. DOI: 10.1016/s1874-6047(08)60147-x.Peer-Reviewed Original ResearchAminoacyl-tRNA synthetasesEucaryotic organismsSpecific aminoacyl-tRNA synthetasesCorresponding cytoplasmic enzymesFamily of enzymesMitochondrial tRNAsProtein biosynthesisMammalian cellsMammalian virusesSynthetasesCytoplasmic enzymeSeparate proteinsCell extractsTRNAAmino acidsOrganismsCytoplasmSame organismEnzymeOrganellesMitochondriaMachineryProteinKey roleProcaryotes