1994
Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase
Weygand-Duraševic I, Rogers M, Söll D. Connecting Anticodon Recognition with the Active Site of Escherichia coli Glutaminyl-tRNA Synthetase. Journal Of Molecular Biology 1994, 240: 111-118. PMID: 8027995, DOI: 10.1006/jmbi.1994.1425.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseAnticodon recognitionMutant enzymesEscherichia coli glutaminyl-tRNA synthetaseOpal suppressor tRNASpecificity constantMutant gene productsWild-type enzymeAmino acid loopExtensive conformational changesActive siteNumber of mutationsSuppressor tRNAGene productsGlnRPathways of communicationSaturation mutagenesisTRNAAcceptor stemAcid loopGenetic selectionConformational changesAnticodonPoor substrateAminoacylationFunctional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
Rogers M, Adachi T, Inokuchi H, Söll D. Functional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 291-295. PMID: 7506418, PMCID: PMC42933, DOI: 10.1073/pnas.91.1.291.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAmino Acyl-tRNA SynthetasesAnticodonBacterial ProteinsEscherichia coliGenes, SuppressorModels, MolecularMolecular Sequence DataMutagenesis, Site-DirectedProtein Structure, TertiaryRNA, BacterialRNA, TransferStructure-Activity RelationshipSubstrate SpecificityTransfer RNA AminoacylationConceptsEscherichia coli glutaminyl-tRNA synthetaseGlutaminyl-tRNA synthetaseLys-317Genetic selectionOpal suppressorMutant enzymesWild-type GlnRSAsp-235Anticodon-binding domainSingle amino acid changeSite-directed mutagenesisNumber of mutantsAmino acid changesRecognition of tRNAGlnR mutantAnticodon recognitionAdditional mutantsGln mutantGlnRMutantsAcid changesBase pairsSpecificity constantAminoacylationTRNA
1993
Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase
Rogers M, Weygand-Durašević I, Schwob E, Sherman J, Rogers K, Adachi T, Inokuchi H, Söll D. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase. Biochimie 1993, 75: 1083-1090. PMID: 8199243, DOI: 10.1016/0300-9084(93)90007-f.Peer-Reviewed Original ResearchConceptsOpal suppressor tRNAGlutaminyl-tRNA synthetaseAcceptor stem recognitionSuppressor tRNAEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionAmber suppressor tRNAExtensive mutational analysisRecognition of tRNARNA contactsTRNA transcriptsRelaxed specificityMutational analysisTRNAGlnRAcceptor stemExtensive proteinIndividual functional groupsMutantsSpecific recognitionAnticodonAminoacylationSynthetaseIdentity elementSynthetases
1992
Switching tRNA(Gln) identity from glutamine to tryptophan.
Rogers M, Adachi T, Inokuchi H, Söll D. Switching tRNA(Gln) identity from glutamine to tryptophan. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 3463-3467. PMID: 1565639, PMCID: PMC48888, DOI: 10.1073/pnas.89.8.3463.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acyl-tRNA SynthetasesAnticodonBase SequenceBeta-GalactosidaseCloning, MolecularEscherichia coliGenes, BacterialGenes, SuppressorGenes, SyntheticGlutamineMolecular Sequence DataMutagenesis, Site-DirectedNucleic Acid ConformationRNA, Transfer, GlnSuppression, GeneticTetrahydrofolate DehydrogenaseTryptophanConceptsOpal suppressorEscherichia coli glutaminyl-tRNA synthetaseAccuracy of aminoacylationGlutaminyl-tRNA synthetaseN-terminal sequence analysisEfficient suppressorYeast mitochondriaRespective tRNAsUCA anticodonAmber suppressorFol geneUGA codonUGA mutationsSequence analysisAlanine insertionAnticodonGenetic selectionBase pairsBase substitutionsSuppressorTRNATrpRSDihydrofolate reductasePosition 35Mutations
1988
Site-directed mutagenesis to fine-tune enzyme specificity
Uemura H, Rogers M, Swanson R, Watson L, Söll D. Site-directed mutagenesis to fine-tune enzyme specificity. Protein Engineering Design And Selection 1988, 2: 293-296. PMID: 3150543, DOI: 10.1093/protein/2.4.293.Peer-Reviewed Original ResearchConceptsOligonucleotide-directed mutagenesisEscherichia coli glutaminyl-tRNA synthetaseGenetic selectionGlutaminyl-tRNA synthetaseAmino acid replacementsSite-directed mutagenesisAcid replacementsEnzyme specificitySingle residueMutagenesisSide chainsRepulsive charge-charge interactionsSpecific recognitionCharge-charge interactionsNucleic acidsMutantsProteinSupFSynthetaseResiduesGlutamineSelectionEscherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
Uemura H, Conley J, Yamao F, Rogers J, Söll D. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity. Protein Sequences And Data Analysis 1988, 1: 479-85. PMID: 2464170.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseTRNA bindingEscherichia coli glutaminyl-tRNA synthetaseExtensive homology searchesSingle amino acid replacementSingle amino acid changeRegion of homologyAminoacyl-tRNA synthetasesAmino acid replacementsAminoacyl adenylate formationAmino acids 235Amino acid changesLittle apparent similarityGlnS geneTRNA discriminationHomology searchGene productsAcid replacementsShare regionsDifferent tRNAsShort stretchesGenetic selectionAcid changesAsn changeHomology
1979
Suppression
Steege D, Söll D. Suppression. Biological Regulation And Development 1979, 433-485. DOI: 10.1007/978-1-4684-3417-0_11.Peer-Reviewed Original ResearchGenetic suppressionType phenotypeFinal gene productsWild-type phenotypePairs of genesInformational suppressorsSuppressor mutationsNonsense suppressionMissense suppressionGene productsMolecular basisFrameshift suppressionGene expressionMutant organismsMolecular mechanismsCell metabolismGenetic selectionGenetic termsMutationsSecondary mutationsTranscriptionMacromolecular componentsPrimary mutationsSuppressorPhenotype