2015
Inside Cover: Chemical Evolution of a Bacterial Proteome (Angew. Chem. Int. Ed. 34/2015)
Hoesl M, Oehm S, Durkin P, Darmon E, Peil L, Aerni H, Rappsilber J, Rinehart J, Leach D, Söll D, Budisa N. Inside Cover: Chemical Evolution of a Bacterial Proteome (Angew. Chem. Int. Ed. 34/2015). Angewandte Chemie International Edition 2015, 54: 9726-9726. DOI: 10.1002/anie.201506522.Peer-Reviewed Original Research
2008
Quality control despite mistranslation caused by an ambiguous genetic code
Ruan B, Palioura S, Sabina J, Marvin-Guy L, Kochhar S, LaRossa RA, Söll D. Quality control despite mistranslation caused by an ambiguous genetic code. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 16502-16507. PMID: 18946032, PMCID: PMC2575449, DOI: 10.1073/pnas.0809179105.Peer-Reviewed Original ResearchConceptsGenetic codeAa-tRNAWild-type proteinAminoacyl-tRNA synthetasesInactive mutant proteinsHeat shock responseE. coliMutant proteinsReporter proteinMissense suppressionFunctional proteinsCognate tRNASelective pressureAminoacyl-tRNAActive enzymeShock responseProtein synthesisNative conformationEnergetic costAmino acidsMissense mutationsProteinBiochemical evidenceCorrect pairingProtein quality
2000
Transfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo
Kim H, Kim I, Söll D, Lee Y. Transfer RNA Identity Change in Anticodon Variants of E. coli tRNAPhe in Vivo. Molecules And Cells 2000, 10: 76-82. PMID: 10774751, DOI: 10.1007/s10059-000-0076-7.Peer-Reviewed Original ResearchConceptsMutant tRNA genesMutant tRNAsTRNA genesAnticodon sequenceAnticodon mutantsHost viabilityE. coliAmino acidsMost aminoacyl-tRNA synthetasesOpal stop codonAminoacyl-tRNA synthetasesSite-directed mutagenesisE. coli tRNAMajor recognition elementAnticodon variantsSuch tRNAsTRNAStop codonAminoacylation specificityAnticodonSimilarity dendrogramVivo evolutionGenesAcceptor specificityAnticodon change
1994
Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
Frugier M, Söll D, Giegé R, Florentz C. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases. Biochemistry 1994, 33: 9912-21. PMID: 8060999, DOI: 10.1021/bi00199a013.Peer-Reviewed Original ResearchConceptsAminoacyl-tRNA synthetasesIdentity nucleotidesHigh-resolution X-ray structuresAminoacyl-tRNA synthetase complexGlutaminyl-tRNA synthetaseAspartyl-tRNA synthetasesAspartyl-tRNA synthetaseGlutamine identityCognate tRNATRNA structureTRNA moleculesTRNAAminoacylation specificitySynthetase complexSpecific aminoacylationConformational changesSynthetasesEscherichia coliYeastSynthetaseNucleotidesE. coliX-ray structureComplex formationColiCoexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli
Weygand-Durasević I, Nalaskowska M, Söll D. Coexpression of eukaryotic tRNASer and yeast seryl-tRNA synthetase leads to functional amber suppression in Escherichia coli. Journal Of Bacteriology 1994, 176: 232-239. PMID: 8282701, PMCID: PMC205035, DOI: 10.1128/jb.176.1.232-239.1994.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast seryl-tRNA synthetaseEscherichia coliSerine tRNA geneE. coliConservation of determinantsTRNA genesSchizosaccharomyces pombePrimary transcriptPlasmid promoterAmber suppressionTRNA identityFunctional expressionColiCoexpressionSynthetasePombeGenesPromoterSuppressorTranscriptsOrganismsConservationExpressionEfficient suppression
1993
Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo
WEYGAND‐DURAŠEVIĆ I, Nenad B, Dieter J, Dieter S. Yeast seryl‐tRNA synthetase expressed in Escherichia coli recognizes bacterial serine‐specific tRNAs in vivo. The FEBS Journal 1993, 214: 869-877. PMID: 7686490, DOI: 10.1111/j.1432-1033.1993.tb17990.x.Peer-Reviewed Original ResearchConceptsSeryl-tRNA synthetaseYeast SerRSYeast seryl-tRNA synthetaseEscherichia coliE. coli tRNAVivo complementationProkaryotic hostsTwo-step purificationSer geneHomologous tRNAsNonpermissive temperatureSer mutantE. coli strainsTRNAE. coliColi strainsColiSynthetaseSerRSVivoComplementationMutantsSaccharomycesGenesPromoterThe periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli
Verkamp E, Backman V, Björnsson J, Söll D, Eggertsson G. The periplasmic dipeptide permease system transports 5-aminolevulinic acid in Escherichia coli. Journal Of Bacteriology 1993, 175: 1452-1456. PMID: 8444807, PMCID: PMC193232, DOI: 10.1128/jb.175.5.1452-1456.1993.Peer-Reviewed Original ResearchConceptsDpp operonE. coli chromosomeEscherichia coliWild-type growthClasses of mutantsAbsence of ALAGenetic screenDpp mutationsColi chromosomeDpp transportALA biosynthesisFirst geneDipeptide transport systemAnaerobic growthChromosomal insertionOperonRecombinant plasmidTransport systemExogenous ALAALA uptakeE. coliNormal growthMutantsMutationsColi
1992
Arabidopsis alternative oxidase sustains Escherichia coli respiration.
Kumar A, Söll D. Arabidopsis alternative oxidase sustains Escherichia coli respiration. Proceedings Of The National Academy Of Sciences Of The United States Of America 1992, 89: 10842-10846. PMID: 1438286, PMCID: PMC50438, DOI: 10.1073/pnas.89.22.10842.Peer-Reviewed Original ResearchConceptsAlternative oxidaseArabidopsis thaliana cDNA libraryGlutamyl-tRNA reductaseCyanide-insensitive respiratory pathwayAlternative oxidase activityAmino acid sequenceArabidopsis proteinsHemA geneMolecular biological investigationsCDNA libraryFirst enzymeAcid sequenceSauromatum guttatumEscherichia coli strainsSingle polypeptideRespiratory pathwayAerobic respirationRedox enzymesE. coliColi strainsPorphyrin biosynthesisGenesEnzymeProteinBiological investigationsGlutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression.
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. Journal Of Biological Chemistry 1992, 267: 8275-8280. PMID: 1569081, DOI: 10.1016/s0021-9258(18)42438-6.Peer-Reviewed Original ResearchMeSH KeywordsAldehyde OxidoreductasesAmino Acid SequenceBase SequenceChromatography, GelCyanobacteriaEscherichia coliGene ExpressionGenes, BacterialGenes, FungalGenetic Complementation TestMolecular Sequence DataOpen Reading FramesPlasmidsRestriction MappingSaccharomyces cerevisiaeSequence Homology, Nucleic AcidConceptsGlutamyl-tRNA reductaseHemA geneAmino acid sequenceHemA proteinGluTR activitySynechocystis 6803Acid sequenceE. coliGlutamate-1-semialdehyde aminotransferaseHemA gene productEscherichia coliCyanobacterium Synechocystis spOpen reading frameEnterobacterium Escherichia coliDNA sequence analysisFunctional complementationGene structureGlu-tRNAGel filtration experimentsPCC 6803Synechocystis spGlutamyl-tRNAAcid polypeptideReading frameALA formation
1989
δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA
O'Neill G, Chen M, Söll D. δ-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 60: 255-259. DOI: 10.1111/j.1574-6968.1989.tb03482.x.Peer-Reviewed Original ResearchΔ‐Aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaAcid biosynthesisCell-free extractsCell extractsΔ-aminolevulinic acidBiosynthetic activitySubtilisColiGabaculinAbstract Cell-free extractsAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteriadelta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA.
O'Neill G, Chen M, Söll D. delta-Aminolevulinic acid biosynthesis in Escherichia coli and Bacillus subtilis involves formation of glutamyl-tRNA. FEMS Microbiology Letters 1989, 51: 255-9. PMID: 2511063, DOI: 10.1016/0378-1097(89)90406-0.Peer-Reviewed Original ResearchConceptsDelta-aminolevulinic acid biosynthesisChloroplasts of algaeTRNA-dependent transformationB. subtilisE. coliBacillus subtilisHigher plant speciesEscherichia coliPlant speciesAnaerobic eubacteriaGlutamyl-tRNAAcid biosynthesisCell-free extractsCell extractsBiosynthetic activitySubtilisDelta-aminolevulinic acidColiGabaculinAnaerobic conditionsAlaEubacteriaArchaebacteriaChloroplastsCyanobacteria
1987
Allele-specific complementation of an Escherichia coli leuB mutation by a Lactobacillus bulgaricus tRNA gene
Hottinger H, Ohgi T, Zwahlen M, Dhamija S, Söll D. Allele-specific complementation of an Escherichia coli leuB mutation by a Lactobacillus bulgaricus tRNA gene. Gene 1987, 60: 75-83. PMID: 3326787, DOI: 10.1016/0378-1119(87)90215-0.Peer-Reviewed Original ResearchConceptsTRNA genesCopy numberWild-type formE. coli promotersHigh copy numberGene copy numberLeuB mutationClone bankLeucine prototrophyLow copy numberMissense suppressionNucleotide sequenceSerine tRNATerminator elementsGenesRestoration of activityTRNAEscherichia coliAmino acidsGene allelesExtra armE. coli
1985
supN ochre suppressor gene in Escherichia coli codes for tRNALys
Uemura H, Thorbjarnardóttir S, Gamulin V, Yano J, Andrésson O, Söll D, Eggertsson G. supN ochre suppressor gene in Escherichia coli codes for tRNALys. Journal Of Bacteriology 1985, 163: 1288-1289. PMID: 3897192, PMCID: PMC219277, DOI: 10.1128/jb.163.3.1288-1289.1985.Peer-Reviewed Original ResearchNucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs
Grosjean H, Nicoghosian K, Haumont E, Söll D, Cedergren R. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Research 1985, 13: 5697-5706. PMID: 3898020, PMCID: PMC321899, DOI: 10.1093/nar/13.15.5697.Peer-Reviewed Original ResearchConceptsSerine tRNANucleotide sequenceRecent common ancestorE. coli tRNACodon-anticodon interactionStructure-function relationshipsEubacterial originUCU codonsEvolutionary analysisCommon ancestorD-loopTRNAAnticodon stemSerine familyAnticodonGenesE. coliMinor speciesCodonMajor speciesSpeciesSequenceTRNASerAncestorSerine[8] Glutaminyl-tRNA synthetase of Escherichia coli
Hoben P, Söll D. [8] Glutaminyl-tRNA synthetase of Escherichia coli. Methods In Enzymology 1985, 113: 55-59. PMID: 3911010, DOI: 10.1016/s0076-6879(85)13011-9.Peer-Reviewed Original ResearchConceptsGlutaminyl-tRNA synthetaseStructural geneSpecific aminoacyl-tRNA synthetaseE. coli chromosomeAmino acidsCognate amino acidTemperature-sensitive phenotypeGlutamyl-tRNA synthetaseAminoacyl-tRNA synthetaseColi chromosomeGln-tRNAGlnDNA fragmentsProtein synthesisEscherichia coliThermolabile enzymeCellular levelGenesGln mutationSynthetaseGlnRE. coliSeparate enzymesMultistep processNegative bacteriaEnzymeLeucine tRNA family of Escherichia coli: nucleotide sequence of the supP(Am) suppressor gene
Thorbjarnardóttir S, Dingermann T, Rafnar T, Andrésson O, Söll D, Eggertsson G. Leucine tRNA family of Escherichia coli: nucleotide sequence of the supP(Am) suppressor gene. Journal Of Bacteriology 1985, 161: 219-222. PMID: 2981802, PMCID: PMC214859, DOI: 10.1128/jb.161.1.219-222.1985.Peer-Reviewed Original ResearchConceptsSuppressor allelesLeuX geneAmber suppressor allelesMature coding sequenceLeucyl-tRNA synthetaseSingle base changeTRNA familiesCAA anticodonBox sequenceTermination signalDNA sequencesNucleotide sequenceBacteriophage T4Coding sequenceAminoacyl stemSuppressor geneLoop regionTRNABase changesEscherichia coliGenesE. coliSequenceColiAlleles
1982
18 RNA Methylation
Söll D, Kline L. 18 RNA Methylation. The Enzymes 1982, 15: 557-566. DOI: 10.1016/s1874-6047(08)60290-5.Peer-Reviewed Original ResearchRNA methylationSpecific methyltransferase enzymesPost-transcriptional modificationsMethylation of tRNARNA methyltransferasesTRNA methyltransferaseBiological regulationSubstrate RNAHomologous RNAMethyltransferase enzymeTRNAMethylationS-adenosylmethionineMethyl donorMethyl-deficient tRNARNAE. coliMutantsMethyltransferaseEnzymeMethyltransferasesRRNANucleotidesIsolationColi
1974
The phenylalanine tRNA from Mycoplasma sp. (Kid): a tRNA lacking hypermodified nucleosides functional in protein synthesis.
Kimball M, Soll D. The phenylalanine tRNA from Mycoplasma sp. (Kid): a tRNA lacking hypermodified nucleosides functional in protein synthesis. Nucleic Acids Research 1974, 1: 1713-20. PMID: 4615304, PMCID: PMC343450.Peer-Reviewed Original Research
1970
N6-(Δ2-isopentenyl)adenosine: Biosynthesis in vitro in transfer RNA by an enzyme purified from escherichia coli
Bartz J, Kline L, Söll D. N6-(Δ2-isopentenyl)adenosine: Biosynthesis in vitro in transfer RNA by an enzyme purified from escherichia coli. Biochemical And Biophysical Research Communications 1970, 40: 1481-1487. PMID: 4326583, DOI: 10.1016/0006-291x(70)90035-5.Peer-Reviewed Original ResearchMeSH KeywordsAdenineAdenine NucleotidesAlkenesAnimalsCentrifugation, Density GradientChromatography, PaperColiphagesEscherichia coliHydrogen-Ion ConcentrationHydrolysisLiverMolecular WeightMycoplasmaNucleosidesOrganophosphorus CompoundsPhosphoric AcidsPolynucleotidesPotassium PermanganateRatsRNA, BacterialRNA, TransferRNA, ViralTransferases
1967
Studies on polynucleotides LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique
Söll D, Cherayil J, Bock R. Studies on polynucleotides LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. Journal Of Molecular Biology 1967, 29: 97-112. PMID: 4861614, DOI: 10.1016/0022-2836(67)90183-0.Peer-Reviewed Original ResearchConceptsTransfer RNAAmino acidsE. coliIndividual amino acidsCodon recognitionMultiple codonsMultiple speciesRespective amino acidsWobble hypothesisYeast transfer RNAEscherichia coliCodonRNAColiYeastSpeciesBindingRecognition patternsTRNARibosomesThird letterStimulation of bindingTrinucleotideAcidInteresting differences