2017
Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection
Ehrlich AK, Fernández OL, Rodriguez-Pinto D, Castilho TM, Caridad M, Goldsmith-Pestana K, Saravia NG, McMahon-Pratt D. Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection. Infection And Immunity 2017, 85: 10.1128/iai.00981-16. PMID: 28052994, PMCID: PMC5328479, DOI: 10.1128/iai.00981-16.Peer-Reviewed Original ResearchConceptsAntigen-presenting cellsPeripheral blood mononuclear cellsCutaneous leishmaniasisB cellsIL-17IL-13Inflammatory responseMouse modelToll-like receptor 9 ligand CpGAlternate therapeutic approachCurrent treatment optionsBlood mononuclear cellsMixed inflammatory responseRegulatory cell functionProduction of IFNPredominant etiologic agentDose-response effectHost immune responseCell populationsGrowth factor βCpG treatmentRegulatory cellsChemokine responsesIL-10Host Immune
2016
Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness
Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorganic & Medicinal Chemistry Letters 2016, 26: 5247-5253. PMID: 27720295, DOI: 10.1016/j.bmcl.2016.09.051.Peer-Reviewed Original ResearchConceptsT. brucei infectionBrucei infectionComplex treatment regimensFirst-line drugsNew therapeutic strategiesLeishmania major promastigotesAnti-parasitic potentialTreatment regimensTherapeutic windowTherapeutic strategiesCurrent drugsMajor promastigotesEncouraging initial resultsHuman liverAntibiotic resistanceGreater cytotoxicityProtozoan parasiteKidney cellsMedicinal chemistry optimizationInfectionInhibitorsPotent inhibitorBrucei parasitesDrugsCytotoxicityImmunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model
Siefert AL, Ehrlich A, Corral MJ, Goldsmith-Pestana K, McMahon-Pratt D, Fahmy TM. Immunomodulatory nanoparticles ameliorate disease in the Leishmania (Viannia) panamensis mouse model. Biomaterials 2016, 108: 168-176. PMID: 27636154, PMCID: PMC5049880, DOI: 10.1016/j.biomaterials.2016.09.004.Peer-Reviewed Original ResearchConceptsPathogen-associated molecular patternsAccumulation of MDSCsHyper-inflammatory responseOngoing immune responseCytokine IL-10Antigen-presenting cellsCurrent treatment strategiesInflammation-mediated diseasesLong treatment regimensSite of infectionNew World leishmaniasisCellular immunomodulationIL-17Suppressor cellsDendritic cellsIL-10Immunotherapeutic approachesChronic inflammationTreatment regimensIL-13Free CpGTreatment strategiesTherapeutic effectImmune responsePreclinical studiesLeishmania‐encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence
Holowka T, Castilho TM, Garcia AB, Sun T, McMahon‐Pratt D, Bucala R. Leishmania‐encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. The FASEB Journal 2016, 30: 2249-2265. PMID: 26956417, PMCID: PMC4871794, DOI: 10.1096/fj.201500189r.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, Differentiation, B-LymphocyteApoptosisCD4-Positive T-LymphocytesCloning, MolecularGene DeletionGene Expression RegulationHistocompatibility Antigens Class IILeishmania majorLeishmaniasis, CutaneousMacrophage Migration-Inhibitory FactorsMacrophagesMiceMice, Inbred BALB CMice, Inbred C57BLMice, KnockoutMice, SCIDOrganisms, Genetically ModifiedProtein Array AnalysisProtozoan ProteinsConceptsMacrophage migration inhibitory factorMigration inhibitory factorCD4 T cellsInhibitory factorL. majorT cellsHost immunityProtective CD4 T cellsEffector CD4 T cellsCytokine macrophage migration inhibitory factorMajor-infected miceT cell primingAntigen-presenting cellsT cell formationExpression of IFNDeath-1Functional exhaustionIL-7RHost responseParasite persistenceParasite burdenParasite growthReduced expressionMiceSignificant differencesThe Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation
Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L, Shin JH, Park JH, Tang WH, Kim ST, Maher SE, Goldsmith-Pestana K, Shan P, Hwa J, Lee PJ, Krause DS, Rothlin CV, McMahon-Pratt D, Bothwell AL. The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation. Immunity 2016, 44: 246-258. PMID: 26872695, PMCID: PMC4758884, DOI: 10.1016/j.immuni.2016.01.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DermatophagoidesAntigens, ProtozoanAsthmaBlood PlateletsCell DifferentiationCells, CulturedCytokinesExtracellular Signal-Regulated MAP KinasesGene Expression RegulationHumansInflammationIntercellular Signaling Peptides and ProteinsLeishmania majorLeishmaniasis, CutaneousMiceMice, Inbred BALB CMice, Inbred C57BLMice, TransgenicModels, AnimalPyroglyphidaeSignal TransductionTh2 CellsTOR Serine-Threonine KinasesWnt ProteinsConceptsCell-mediated inflammationTh2 cell cytokine productionCell cytokine productionLeukocyte-platelet aggregatesLeukocyte infiltrationDkk-1Cytokine productionT helper 2 cellsLeishmania major infectionHouse dust miteTranscription factor c-MafAllergen challengeMajor infectionDust miteImmune responseDickkopf-1Parasitic infectionsGATA-3Pathological roleFunctional inhibitionInflammationC-MafP38 MAPKInfiltrationInfectionThe Src kinases Hck, Fgr and Lyn activate Arg to facilitate IgG-mediated phagocytosis and Leishmania infection
Wetzel DM, Rhodes EL, Li S, McMahon-Pratt D, Koleske AJ. The Src kinases Hck, Fgr and Lyn activate Arg to facilitate IgG-mediated phagocytosis and Leishmania infection. Journal Of Cell Science 2016, 129: 3130-3143. PMID: 27358479, PMCID: PMC5004897, DOI: 10.1242/jcs.185595.Peer-Reviewed Original ResearchMeSH KeywordsAniline CompoundsAnimalsCytokinesDisease Models, AnimalImatinib MesylateImmunoglobulin GLeishmaniaLeishmaniasisMacrophagesMiceModels, BiologicalNitrilesParasitesPhagocytosisPhosphorylationProtein-Tyrosine KinasesProto-Oncogene ProteinsProto-Oncogene Proteins c-hckPyrimidinesQuinolinesRAW 264.7 CellsSignal TransductionSrc-Family KinasesConceptsAmastigote uptakeObligate intracellular parasite LeishmaniaImmunoglobulin-mediated phagocytosisIntracellular parasite LeishmaniaNovel therapeutic strategiesPersistence of infectionLeishmania infectionIgG-mediated phagocytosisTherapeutic strategiesFc receptorsSmall molecule inhibitorsArg activationDisease severityParasite burdenPrimary macrophagesMacrophagesKinase inhibitorsLeishmaniasisHuman hostDevastating diseaseInfectionParasite LeishmaniaSrc family kinasesPhagocytosisLeishmania
2014
The Immunotherapeutic Role of Regulatory T Cells in Leishmania (Viannia) panamensis Infection
Ehrlich A, Castilho TM, Goldsmith-Pestana K, Chae WJ, Bothwell AL, Sparwasser T, McMahon-Pratt D. The Immunotherapeutic Role of Regulatory T Cells in Leishmania (Viannia) panamensis Infection. The Journal Of Immunology 2014, 193: 2961-2970. PMID: 25098291, PMCID: PMC4170189, DOI: 10.4049/jimmunol.1400728.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodiesAntigen-Antibody ComplexCell ProliferationFemaleImmunotherapy, AdoptiveIndoleamine-Pyrrole 2,3,-DioxygenaseInflammationInterferon-gammaInterleukin-10Interleukin-13Interleukin-17Interleukin-2Leishmania guyanensisLeishmaniasis, MucocutaneousLymphocyte CountMiceMice, Inbred BALB CMice, TransgenicParasite LoadT-Lymphocytes, RegulatoryTransforming Growth Factor betaConceptsRegulatory T cellsPanamensis infectionInflammatory responseT cellsLeishmania parasitesDisease pathologyImmunotherapeutic treatment approachesL. panamensis infectionsLeishmania panamensis infectionPercentage of TregsRIL-2/Th2 inflammatory responseIL-13 levelsParasite loadAlternate treatment strategiesT cell proliferationTreg functionalityDisease exacerbationAdoptive transferIL-17IL-10Naive miceCytokine responsesImmunotherapeutic roleCytokine production
2012
The Abl and Arg Kinases Mediate Distinct Modes of Phagocytosis and Are Required for Maximal Leishmania Infection
Wetzel DM, McMahon-Pratt D, Koleske AJ. The Abl and Arg Kinases Mediate Distinct Modes of Phagocytosis and Are Required for Maximal Leishmania Infection. Molecular And Cellular Biology 2012, 32: 3176-3186. PMID: 22665498, PMCID: PMC3434515, DOI: 10.1128/mcb.00086-12.Peer-Reviewed Original ResearchConceptsComplement receptor 3Leishmania infectionIgG-coated beadsMurine cutaneous leishmaniasisPotential therapeutic targetLeishmania uptakeVisceral diseaseObligate intracellular parasitesCutaneous leishmaniasisTherapeutic targetFc receptorsAmastigote uptakeTreatment resultsReceptor 3Small lesionsInfection severityLeishmania amazonensisKinase inhibitorsIntracellular parasitesBead phagocytosisPhagocytosisReceptorsC3biInfectionLeishmaniasis
2011
TLR1/2 Activation during Heterologous Prime-Boost Vaccination (DNA-MVA) Enhances CD8+ T Cell Responses Providing Protection against Leishmania (Viannia)
Jayakumar A, Castilho TM, Park E, Goldsmith-Pestana K, Blackwell JM, McMahon-Pratt D. TLR1/2 Activation during Heterologous Prime-Boost Vaccination (DNA-MVA) Enhances CD8+ T Cell Responses Providing Protection against Leishmania (Viannia). PLOS Neglected Tropical Diseases 2011, 5: e1204. PMID: 21695103, PMCID: PMC3114751, DOI: 10.1371/journal.pntd.0001204.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesDisease Models, AnimalFemaleGenetic VectorsImmunization, SecondaryInterferon-gammaInterleukin-10Interleukin-13LeishmaniaLeishmaniasisLeishmaniasis VaccinesMiceMice, Inbred BALB CPeroxidasesProtozoan ProteinsRodent DiseasesToll-Like Receptor 1Toll-Like Receptor 2VaccinationVaccines, DNAVaccines, SyntheticVaccinia virusViral VaccinesConceptsPrime-boost vaccinationHeterologous prime-boost vaccinationCD8 T cellsT cell responsesT cellsTLR1/2 activationIL-10Vaccination modalityIL-13Immune responseAntigen-specific CD8 cellsCD8 T cell responsesCell responsesL. panamensis infectionsSpecific CD8 cellsTLR1/2 agonist Pam3CSK4IL-10 responsesVaccine-induced protectionCD4 T cellsMurine immune responseIL-13 responsesLeishmania speciesInfection/diseaseVaccinia virus AnkaraInnate immune response
2010
Murine model of chronic L. (Viannia) panamensis infection: Role of IL‐13 in disease
Castilho TM, Goldsmith‐Pestana K, Lozano C, Valderrama L, Saravia NG, McMahon‐Pratt D. Murine model of chronic L. (Viannia) panamensis infection: Role of IL‐13 in disease. European Journal Of Immunology 2010, 40: 2816-2829. PMID: 20827674, PMCID: PMC3289133, DOI: 10.1002/eji.201040384.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsChronic DiseaseDisease Models, AnimalEnzyme-Linked Immunosorbent AssayFemaleHumansInterferon-gammaInterleukin-13LeishmaniaLeishmaniasis, CutaneousMaleMiceMice, Inbred BALB CMice, KnockoutMiddle AgedReceptors, Interleukin-4Th1 CellsTh2 CellsTumor Necrosis Factor-alphaYoung AdultConceptsL. panamensis infectionsIL-13Panamensis infectionChronic diseasesImmunodeficient miceMurine modelMixed Th1/Th2 responseBALB/c mouse modelTh1/Th2 responsePrevalent etiologic agentHuman cutaneous leishmaniasisPresence of TNFPrevention of leishmaniasisIL-17Immunological mechanismsTh2 responsesIL-10Recurrent lesionsChronic infectionEvident lesionsMice resemblesT cellsImmune responsePersistent infectionLeishmania organismsMurine visceral leishmaniasis: IgM and polyclonal B‐cell activation lead to disease exacerbation
Deak E, Jayakumar A, Cho KW, Goldsmith‐Pestana K, Dondji B, Lambris JD, McMahon‐Pratt D. Murine visceral leishmaniasis: IgM and polyclonal B‐cell activation lead to disease exacerbation. European Journal Of Immunology 2010, 40: 1355-1368. PMID: 20213734, PMCID: PMC2944234, DOI: 10.1002/eji.200939455.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, ProtozoanAntigen PresentationB-LymphocytesComplement C5aDisease ProgressionFemaleHypergammaglobulinemiaImmunity, InnateImmunization, PassiveImmunoglobulin GImmunoglobulin MInterleukin-10Leishmania infantumLeishmaniasis, VisceralLymph NodesLymphocyte ActivationLymphocyte DepletionMaleMiceMice, Inbred BALB CMice, TransgenicParasitemiaConceptsBALB/c miceC miceDisease exacerbationImmune responseVisceral leishmaniasisB cell-derived IL-10WT BALB/c miceB cell antigen presentationPolyclonal B cell activationAnti-Leishmania responseOngoing immune responseL. infantum infectionHuman visceral leishmaniasisBALB/cB cell expansionIntradermal infection modelB cell activationEstablishment of infectionElevated parasitemiaParasite visceralizationCytokine levelsIL-10Infantum infectionPassive transferAntigen presentation
2008
A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses
Kamir D, Zierow S, Leng L, Cho Y, Diaz Y, Griffith J, McDonald C, Merk M, Mitchell RA, Trent J, Chen Y, Kwong YK, Xiong H, Vermeire J, Cappello M, McMahon-Pratt D, Walker J, Bernhagen J, Lolis E, Bucala R. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses. The Journal Of Immunology 2008, 180: 8250-8261. PMID: 18523291, PMCID: PMC2668862, DOI: 10.4049/jimmunol.180.12.8250.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsAntigens, Differentiation, B-LymphocyteApoptosis Regulatory ProteinsCell LineCells, CulturedCrystallography, X-RayHistocompatibility Antigens Class IIHumansIntramolecular OxidoreductasesLeishmania majorMacrophage Migration-Inhibitory FactorsMacrophages, PeritonealMiceMice, Inbred BALB CMice, Inbred C3HMice, KnockoutMolecular Sequence DataRecombinant ProteinsStructural Homology, ProteinConceptsMacrophage migration inhibitory factorCD74-dependent mannerMigration inhibitory factorImmune defense mechanismsHuman macrophage migration inhibitory factorSmall molecule antagonistsActivation-induced apoptosisHost macrophage responseMIF receptorMIF proteinImmune destructionObligate intracellular parasitesMAP kinase activationERK1/2 MAP kinase activationInhibitory factorMacrophage responseLeishmania majorIntracellular parasitesHigh-resolution X-ray crystal structuresSpecies-specific inhibitionMacrophagesSignificant structural homologyKinase activationDefense mechanismsMammalian counterpartsIntradermal NKT cell activation during DNA priming in heterologous prime‐boost vaccination enhances T cell responses and protection against Leishmania
Dondji B, Deak E, Goldsmith‐Pestana K, Perez‐Jimenez E, Esteban M, Miyake S, Yamamura T, McMahon‐Pratt D. Intradermal NKT cell activation during DNA priming in heterologous prime‐boost vaccination enhances T cell responses and protection against Leishmania. European Journal Of Immunology 2008, 38: 706-719. PMID: 18286565, PMCID: PMC3448375, DOI: 10.1002/eji.200737660.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody FormationAntigens, ProtozoanCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesGalactosylceramidesGenetic VectorsGranzymesImmunity, CellularInterferon-gammaInterleukin-10Killer Cells, NaturalLeishmaniasisLymphocyte ActivationLymphocyte DepletionMiceMice, Inbred BALB CMice, Mutant StrainsNitric OxideProtozoan ProteinsSkinT-LymphocytesVaccinationVaccines, DNAVaccinia virusConceptsHeterologous prime-boost vaccinationPrime-boost vaccinationNKT cell activationCD8 T cellsT cellsCell activationVaccinated miceDNA primingActivated C-kinase (rLACK) antigensT cell immune responsesDevelopment of CD4Murine cutaneous leishmaniasisT cell responsesCell immune responsesElicit protective immunityIL-10Protective immunityImmune responseLeishmania homologueIFN-gammaAlphaGalCerCutaneous leishmaniasisVisceral leishmaniasisParasite burdenCell responses
2006
Immunogenicity of the P-8 amastigote antigen in the experimental model of canine visceral leishmaniasis
Carrillo E, Ahmed S, Goldsmith-Pestana K, Nieto J, Osorio Y, Travi B, Moreno J, McMahon-Pratt D. Immunogenicity of the P-8 amastigote antigen in the experimental model of canine visceral leishmaniasis. Vaccine 2006, 25: 1534-1543. PMID: 17178178, PMCID: PMC2571115, DOI: 10.1016/j.vaccine.2006.10.036.Peer-Reviewed Original ResearchConceptsSoluble Leishmania antigenAmastigote antigensImmune responseAmerican cutaneous leishmaniasis patientsTh1-like immune responseSoluble leishmanial antigenCutaneous leishmaniasis patientsIL-4 mRNAAppropriate immune responseCanine visceral leishmaniasisElicit appropriate immune responsesIdentification of LeishmaniaGeneral vaccinesLeishmanial antigensIL-10Leishmania antigenLeishmaniasis patientsSLA antigensTNF-alphaDisease manifestationsIFN-gammaMurine modelMouse modelVisceral leishmaniasisLeishmania infantum
2004
Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease?
McMahon‐Pratt D, Alexander J. Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunological Reviews 2004, 201: 206-224. PMID: 15361243, DOI: 10.1111/j.0105-2896.2004.00190.x.Peer-Reviewed Original ResearchConceptsMajor histocompatibility complex classDistinct Leishmania speciesLeishmania major infectionResolution of infectionT cell responsesT helper 1Histocompatibility complex classDifferent virulence factorsHost defense mechanismsMajor infectionVisceral diseaseHost macrophage cellsImmune mechanismsVisceral organsParasitic protozoaVaccine developmentCutaneous leishmaniasesSusceptibility/resistanceIntracellular pathogensGenus LeishmaniaControl of diseaseInfectionMacrophage cellsDiseaseLeishmania speciesLeishmanial Amastigote Antigen P‐2 Induces Major Histocompatibility Complex Class II‐Dependent Natural Killer‐Cell Reactivity in Cells from Healthy Donors
Nylén S, Maasho K, McMahon‐Pratt D, Akuffo H. Leishmanial Amastigote Antigen P‐2 Induces Major Histocompatibility Complex Class II‐Dependent Natural Killer‐Cell Reactivity in Cells from Healthy Donors. Scandinavian Journal Of Immunology 2004, 59: 294-304. PMID: 15030581, DOI: 10.1111/j.0300-9475.2004.01388.x.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, ProtozoanCD8-Positive T-LymphocytesFetal BloodHistocompatibility Antigens Class IIHumansInterferon-gammaInterleukin-10Killer Cells, NaturalLeishmaniaLeishmaniasisLymphocyte ActivationProtozoan VaccinesReceptors, IgGReverse Transcriptase Polymerase Chain ReactionRNA, MessengerConceptsHealthy donorsLeishmaniasis patientsAmerican cutaneous leishmaniasis patientsClass IIMajor histocompatibility complex class IIMajor histocompatibility complex classHistocompatibility complex class IIClass II antibodiesCutaneous leishmaniasis patientsInterleukin-10 productionNatural killer cellsProtective immune responseInterferon-gamma productionIFN-gamma responsesMHC class IIHistocompatibility complex classHealthy adult donorsDevelopment of vaccinesAdherent cell populationAmastigote antigensNatural killerKiller cellsCytokine productionCell reactivityLeishmania infection
2003
Evaluation of amastigote reactive cells in human cutaneous leishmaniasis caused by Leishmania aethiopica
MAASHO K, MCMAHON-PRATT D, RAITA J, RAUD M, BRITTON S, SOONG L, AKUFFO H. Evaluation of amastigote reactive cells in human cutaneous leishmaniasis caused by Leishmania aethiopica. Clinical & Experimental Immunology 2003, 132: 316-322. PMID: 12699423, PMCID: PMC1808716, DOI: 10.1046/j.1365-2249.2003.02165.x.Peer-Reviewed Original ResearchConceptsPeripheral blood mononuclear cellsCutaneous leishmaniasisNK cellsOld World cutaneous leishmaniasisEthiopian cutaneous leishmaniasisLeishmania parasite infectionIL-10 responsesPercentage of CD4IL-10 productionBlood mononuclear cellsHuman cutaneous leishmaniasisAmastigote antigensLymphoproliferative responsesLeishmaniasis patientsMain cell typesMononuclear cellsAntigen stimulationHuman leishmaniasisGamma interferonLeishmania aethiopicaReactive cellsProtective phenotypePatientsL. aethiopicaLeishmaniasis
2002
Heterogeneity, geographic distribution, and pathogenicity of serodemes of Leishmania viannia in Colombia.
Saravia NG, Weigle K, Navas C, Segura I, Valderrama L, Valencia AZ, Escorcia B, McMahon-Pratt D. Heterogeneity, geographic distribution, and pathogenicity of serodemes of Leishmania viannia in Colombia. American Journal Of Tropical Medicine And Hygiene 2002, 66: 738-44. PMID: 12224583, DOI: 10.4269/ajtmh.2002.66.738.Peer-Reviewed Original Research
2001
Biochemical and Biological Characterization of the Protective Leishmania pifanoi Amastigote Antigen P-8
Colmenares M, Tiemeyer M, Kima P, McMahon-Pratt D. Biochemical and Biological Characterization of the Protective Leishmania pifanoi Amastigote Antigen P-8. Infection And Immunity 2001, 69: 6776-6784. PMID: 11598050, PMCID: PMC100055, DOI: 10.1128/iai.69.11.6776-6784.2001.Peer-Reviewed Original ResearchConceptsAntigen PFurther vaccine studiesSignificant T cell activationT cell activationWestern blot analysisProtective immunityVaccine studiesApolipoprotein EMurine modelCutaneous leishmaniasisSignificant protectionComparable protectionImmunodominant componentAntigenic glycolipidsImmunity studiesAntigenCysteine proteinasesGlycolipid componentBiochemical analysisBiological characterizationSodium dodecyl sulfate-polyacrylamide gel electrophoresisDodecyl sulfate-polyacrylamide gel electrophoresisSulfate-polyacrylamide gel electrophoresisInfectionLeishmaniasisCellular trafficking in trypanosomatids: a new target for therapies?
Costa-Pinto D, Trindade L, McMahon-Pratt D, Traub-Cseko Y. Cellular trafficking in trypanosomatids: a new target for therapies? International Journal For Parasitology 2001, 31: 537-544. PMID: 11334939, DOI: 10.1016/s0020-7519(01)00145-x.Peer-Reviewed Original ResearchConceptsPathogenic trypanosomatidsTrafficking mechanismsLysosomal targetingCellular trafficking mechanismsPlethora of diseasesCellular traffickingTrypanosomatidsTargeting mechanismCysteine proteinasesBiological aspectsNew targetsCurrent knowledgeEfficient vaccineDisease controlTherapyBasic mechanismsTraffickingMechanismTargetParasitesVaccineProteinasesDiseaseTargeting