2021
Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells
Song Y, Shan L, Gbyli R, Liu W, Strowig T, Patel A, Fu X, Wang X, Xu ML, Gao Y, Qin A, Bruscia EM, Tebaldi T, Biancon G, Mamillapalli P, Urbonas D, Eynon E, Gonzalez DG, Chen J, Krause DS, Alderman J, Halene S, Flavell RA. Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021, 371: 1019-1025. PMID: 33674488, PMCID: PMC8292008, DOI: 10.1126/science.abe2485.Peer-Reviewed Original ResearchConceptsRed blood cellsBlood cellsHuman sickle cell diseaseSickle cell diseaseImmunodeficient murine modelKupffer cell densityBone marrow failureMISTRG miceIntrasplenic injectionSCD pathologyCell diseaseMurine modelComplement C3RBC survivalVivo modelHuman cytokinesPreclinical testingHematopoietic stem cellsHuman red blood cellsMarrow failureFumarylacetoacetate hydrolase geneHuman erythropoiesisHuman liverHuman hepatocytesMice
2018
Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies
Xavier-Ferrucio J, Krause DS. Concise Review: Bipotent Megakaryocytic-Erythroid Progenitors: Concepts and Controversies. Stem Cells 2018, 36: 1138-1145. PMID: 29658164, PMCID: PMC6105498, DOI: 10.1002/stem.2834.Peer-Reviewed Original ResearchConceptsMegakaryocytic-erythroid progenitorsProgenitor cellsDifferent functional outputsVariety of speciesProgenitor stageIntermediate progenitor stageErythroid cellsHuman hematopoiesisBlood formationMegakaryocytic lineageMurine cellsHematopoietic stemHematopoietic progenitorsFunctional outputStem cellsDifferentiation capabilityHematopoiesis processProgenitorsLineagesHematopoiesisCell sourceCellsDiscrete stepsRecent advancesSpecies
2010
SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis
Yu L, Ji W, Zhang H, Renda MJ, He Y, Lin S, Cheng EC, Chen H, Krause DS, Min W. SENP1-mediated GATA1 deSUMOylation is critical for definitive erythropoiesis. Journal Of Experimental Medicine 2010, 207: 1183-1195. PMID: 20457756, PMCID: PMC2882842, DOI: 10.1084/jem.20092215.Peer-Reviewed Original ResearchConceptsSmall ubiquitin-like modifier (SUMO) modificationImportant regulatory mechanismEmbryonic day 13.5Down-regulation correlatesFetal liverCre-loxP systemEmbryonic lethalityProtein functionDefinitive erythropoiesisGene promoterDNA bindingRegulatory mechanismsGene expressionGATA1SENP1Fetal liver cellsProtein analysisDay 13.5Global deletionProteinSubsequent erythropoiesisKnockout miceErythropoiesisLiver cellsDeSUMOylation
2009
Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture
Mahajan MC, Karmakar S, Newburger PE, Krause DS, Weissman SM. Dynamics of α-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34+ cells in culture. Experimental Hematology 2009, 37: 1143-1156.e3. PMID: 19607874, PMCID: PMC2997688, DOI: 10.1016/j.exphem.2009.07.001.Peer-Reviewed Original ResearchMeSH KeywordsAlpha-GlobinsAntigens, CD34CCCTC-Binding FactorCells, CulturedChromatin Assembly and DisassemblyEnhancer Elements, GeneticErythroid Precursor CellsErythropoiesisErythropoietinGATA1 Transcription FactorGene Expression Regulation, DevelopmentalGlycophorinsHematopoietic Cell Growth FactorsHistonesHumansInsulator ElementsNF-E2 Transcription Factor, p45 SubunitProtein BindingRepressor ProteinsRNA Polymerase IITranscription FactorsConceptsAlpha-globin lociTranscription factor recruitmentChromatin structureGATA-1Transcription factorsErythroid differentiationGene expressionFactor recruitmentPol IIQuantitative polymerase chain reaction analysisAlpha-globin gene expressionKey erythroid transcription factorsErythroid transcription factorsNF-E2Chromatin immunoprecipitation-quantitative polymerase chain reaction analysisAlpha-globin genesUpstream activator sitesBeta-like genesPolymerase chain reaction analysisChain reaction analysisStages of erythropoiesisGlobin promoterDifferent differentiation stagesFactor CTCFHistone modifications
1997
Multilineage gene expression precedes commitment in the hemopoietic system.
Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T. Multilineage gene expression precedes commitment in the hemopoietic system. Genes & Development 1997, 11: 774-785. PMID: 9087431, DOI: 10.1101/gad.11.6.774.Peer-Reviewed Original ResearchConceptsGene expression programsMultilineage gene expressionLineage specificationExpression programsGene activityLocus activationMultipotential stateGene expressionCytokine receptorsHemopoietic stemGranulocytic lineageProgenitor cellsSingle-cell RT-PCRSame cellsHemopoietic systemRT-PCRExclusive commitmentCell RT-PCRCellsLineagesCoexpressionDifferentiationExpressionStemActivation