2022
Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis
Öz H, Cheng E, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang P, Huang P, Esquibies S, Britto C, Schupp J, Murray T, Halene S, Krause D, Egan M, Bruscia E. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Reports 2022, 41: 111797. PMID: 36516754, PMCID: PMC9833830, DOI: 10.1016/j.celrep.2022.111797.Peer-Reviewed Original ResearchConceptsC motif chemokine receptor 2Monocytes/macrophagesLung tissue damageCystic fibrosisTissue damageCF lungPulmonary neutrophilic inflammationPro-inflammatory environmentChemokine receptor 2CF lung diseaseNumber of monocytesSpecific therapeutic agentsGrowth factor βCF transmembrane conductance regulatorLung hyperinflammationLung neutrophiliaNeutrophilic inflammationNeutrophil inflammationInflammation contributesLung damageNeutrophil recruitmentLung diseaseLung tissueReceptor 2Therapeutic targetRecruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis
Di Pietro C, Öz HH, Zhang PX, Cheng EC, Martis V, Bonfield TL, Kelley TJ, Jubin R, Abuchowski A, Krause DS, Egan ME, Murray TS, Bruscia EM. Recruitment of monocytes primed to express heme oxygenase-1 ameliorates pathological lung inflammation in cystic fibrosis. Experimental & Molecular Medicine 2022, 54: 639-652. PMID: 35581352, PMCID: PMC9166813, DOI: 10.1038/s12276-022-00770-8.Peer-Reviewed Original ResearchConceptsHeme oxygenase-1Cystic fibrosisOxygenase-1Myeloid differentiation factor 88Neutrophilic pulmonary inflammationChronic airway infectionDifferentiation factor 88HO-1 levelsDisease mouse modelPseudomonas aeruginosaRecruitment of monocytesResolution of inflammationMonocytes/macrophagesTreatment of CFConditional knockout miceMechanism of actionLung neutrophiliaNeutrophilic inflammationLung inflammationAirway infectionPulmonary diseasePulmonary inflammationFactor 88Lung damageProinflammatory cytokines
2021
Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells
Song Y, Shan L, Gbyli R, Liu W, Strowig T, Patel A, Fu X, Wang X, Xu ML, Gao Y, Qin A, Bruscia EM, Tebaldi T, Biancon G, Mamillapalli P, Urbonas D, Eynon E, Gonzalez DG, Chen J, Krause DS, Alderman J, Halene S, Flavell RA. Combined liver–cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021, 371: 1019-1025. PMID: 33674488, PMCID: PMC8292008, DOI: 10.1126/science.abe2485.Peer-Reviewed Original ResearchConceptsRed blood cellsBlood cellsHuman sickle cell diseaseSickle cell diseaseImmunodeficient murine modelKupffer cell densityBone marrow failureMISTRG miceIntrasplenic injectionSCD pathologyCell diseaseMurine modelComplement C3RBC survivalVivo modelHuman cytokinesPreclinical testingHematopoietic stem cellsHuman red blood cellsMarrow failureFumarylacetoacetate hydrolase geneHuman erythropoiesisHuman liverHuman hepatocytesMice
2019
Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice
Xavier-Ferrucio J, Scanlon V, Li X, Zhang PX, Lozovatsky L, Ayala-Lopez N, Tebaldi T, Halene S, Cao C, Fleming MD, Finberg KE, Krause DS. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood 2019, 134: 1547-1557. PMID: 31439541, PMCID: PMC6839952, DOI: 10.1182/blood.2019002039.Peer-Reviewed Original ResearchConceptsMK lineage commitmentExtracellular signal-regulated kinase (ERK) pathwaySignal-regulated kinase pathwayMegakaryocytic-erythroid progenitorsBone marrow transplantation assaysSignal transduction analysisIron-deficient conditionsGene expression analysisMegakaryocytic commitmentLineage commitmentTransferrin receptor 2MK lineageTmprss6-/- miceIron sensorExpression analysisKinase pathwayTransduction analysisTransplantation assaysErythroid progenitorsMarrow environmentHematopoietic cellsMessenger RNAPhospho-ERK1/2Systemic iron deficiencyLow ironMKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation
Hu X, Liu ZZ, Chen X, Schulz VP, Kumar A, Hartman AA, Weinstein J, Johnston JF, Rodriguez EC, Eastman AE, Cheng J, Min L, Zhong M, Carroll C, Gallagher PG, Lu J, Schwartz M, King MC, Krause DS, Guo S. MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nature Communications 2019, 10: 1695. PMID: 30979898, PMCID: PMC6461646, DOI: 10.1038/s41467-019-09636-6.Peer-Reviewed Original ResearchConceptsCell fate reprogrammingChromatin accessibilityActin cytoskeletonSomatic cell reprogrammingPluripotency transcription factorsGlobal chromatin accessibilityGenomic accessibilityCytoskeleton (LINC) complexCell reprogrammingCytoskeletal genesTranscription factorsReprogrammingPluripotencyChromatinCytoskeletonMKL1Unappreciated aspectPathwayNuclear volumeNucleoskeletonSUN2CellsActivationGenesExpressionEpithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability
Scanlon VM, Teixeira AM, Tyagi T, Zou S, Zhang PX, Booth CJ, Kowalska MA, Bao J, Hwa J, Hayes V, Marks MS, Poncz M, Krause DS. Epithelial (E)-Cadherin is a Novel Mediator of Platelet Aggregation and Clot Stability. Thrombosis And Haemostasis 2019, 119: 744-757. PMID: 30861547, PMCID: PMC6599679, DOI: 10.1055/s-0039-1679908.Peer-Reviewed Original ResearchConceptsConditional knockout miceKnockout micePlatelet aggregationE-cadherinClot stabilityClot stabilizationSynthase kinase 3β activationAntibody-mediated platelet depletionVivo injury modelsNull plateletsPlatelet productionWild-type miceTail bleeding timeAkt/GSK3βMurine platelet aggregationKnockout mouse modelPlatelet dysfunctionFibrin depositionInjury modelPlatelet depletionPrimary human plateletsBleeding timeMouse modelPlatelet numberE-cadherin antibodyPromoters to Study Vascular Smooth Muscle
Chakraborty R, Saddouk FZ, Carrao AC, Krause DS, Greif DM, Martin KA. Promoters to Study Vascular Smooth Muscle. Arteriosclerosis Thrombosis And Vascular Biology 2019, 39: 603-612. PMID: 30727757, PMCID: PMC6527360, DOI: 10.1161/atvbaha.119.312449.Peer-Reviewed Original ResearchMeSH KeywordsActinsAnimalsCell LineCell LineageCell TransdifferentiationGene Expression RegulationGene Knockout TechniquesGene TargetingHumansMiceMicrofilament ProteinsMuscle ProteinsMuscle, Smooth, VascularMyocytes, Smooth MuscleMyofibroblastsMyosin Heavy ChainsNeovascularization, PathologicNeovascularization, PhysiologicPhenotypePromoter Regions, GeneticRecombinant Fusion ProteinsConceptsSmooth muscle cellsCre driver linesDiversity of phenotypesMuscle cell typesVisceral smooth muscle cellsSMC transdifferentiationActa2 promoterRemarkable plasticityExciting new eraSMC functionCell typesCre linesEmbryonic heartExciting discoveriesPhenotypeMuscle cellsPerivascular adipocytesPromoterVascular smooth muscleNonmuscular cellsExpressionMyeloid cellsCardiovascular phenotypesCellsBlood vessel wall
2018
Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair
Jin H, Ciechanowicz AK, Kaplan AR, Wang L, Zhang P, Lu YC, Tobin RE, Tobin BA, Cohn L, Zeiss CJ, Lee PJ, Bruscia EM, Krause DS. Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2018, 314: l882-l892. PMID: 29345196, PMCID: PMC6008135, DOI: 10.1152/ajplung.00418.2017.Peer-Reviewed Original ResearchConceptsAcute respiratory distress syndromeKO miceSurfactant protein CClinical acute respiratory distress syndromeProtein CAlveolar type 2 cellsAnti-inflammatory mediatorsRespiratory distress syndromeBronchoalveolar lavage fluidAnti-inflammatory moleculesPhosphorylated signal transductionType 2 cellsSPC expressionInducible suicide geneJanus kinaseLevels of suppressorDistress syndromeBAL fluidGranulocyte infiltrationJAK1/2 inhibitorLavage fluidProinflammatory phenotypeInflammatory cytokinesSevere inflammationInjury model
2017
Hematopoietic defects in response to reduced Arhgap21
Xavier-Ferrucio J, Ricon L, Vieira K, Longhini AL, Lazarini M, Bigarella CL, Franchi G, Krause DS, Saad STO. Hematopoietic defects in response to reduced Arhgap21. Stem Cell Research 2017, 26: 17-27. PMID: 29212046, PMCID: PMC6084430, DOI: 10.1016/j.scr.2017.11.014.Peer-Reviewed Original ResearchConceptsErythroid commitmentProgenitor cellsSerial bone marrow transplantationHuman primary cellsProtein familyRho GTPasesHematopoietic progenitor cellsPhenotypic HSCsRho GTPaseHematopoietic defectsRhoC activityNegative regulatorARHGAP21Hematopoietic stemHematopoietic cellsMyeloid progenitorsProgenitor coloniesPrimary cellsBone marrow cellsCancer cellsFunctional aspectsHaploinsufficient miceMarrow cellsCellsGTPasesEzrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages
Di Pietro C, Zhang PX, O’Rourke T, Murray TS, Wang L, Britto CJ, Koff JL, Krause DS, Egan ME, Bruscia EM. Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune response in macrophages. Scientific Reports 2017, 7: 10882. PMID: 28883468, PMCID: PMC5589856, DOI: 10.1038/s41598-017-11012-7.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell LineCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorCytoskeletal ProteinsDisease Models, AnimalMacrophage ActivationMacrophagesMicePhosphatidylinositol 3-KinasesProto-Oncogene Proteins c-aktPseudomonas aeruginosaPseudomonas InfectionsSignal TransductionToll-Like Receptor 4ConceptsCystic fibrosis transmembrane conductance regulatorPI3K/AktFibrosis transmembrane conductance regulatorTransmembrane conductance regulatorPI3K/Akt signalingConductance regulatorAnti-bacterial immune responseAkt signalingAltered localizationEzrinCystic fibrosis diseaseMφ activationAktProtein levelsFibrosis diseaseActivationImmune regulationPhagocytosisInductionDirect linkSignalingRegulatorImmune responseMΦMacrophagesPediatric non–Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes
de Rooij JD, Branstetter C, Ma J, Li Y, Walsh MP, Cheng J, Obulkasim A, Dang J, Easton J, Verboon LJ, Mulder HL, Zimmermann M, Koss C, Gupta P, Edmonson M, Rusch M, Lim JY, Reinhardt K, Pigazzi M, Song G, Yeoh AE, Shih LY, Liang DC, Halene S, Krause DS, Zhang J, Downing JR, Locatelli F, Reinhardt D, van den Heuvel-Eibrink MM, Zwaan CM, Fornerod M, Gruber TA. Pediatric non–Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes. Nature Genetics 2017, 49: 451-456. PMID: 28112737, PMCID: PMC5687824, DOI: 10.1038/ng.3772.Peer-Reviewed Original Research
2016
In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery
Bahal R, Ali McNeer N, Quijano E, Liu Y, Sulkowski P, Turchick A, Lu YC, Bhunia DC, Manna A, Greiner DL, Brehm MA, Cheng CJ, López-Giráldez F, Ricciardi A, Beloor J, Krause DS, Kumar P, Gallagher PG, Braddock DT, Mark Saltzman W, Ly DH, Glazer PM. In vivo correction of anaemia in β-thalassemic mice by γPNA-mediated gene editing with nanoparticle delivery. Nature Communications 2016, 7: 13304. PMID: 27782131, PMCID: PMC5095181, DOI: 10.1038/ncomms13304.Peer-Reviewed Original ResearchConceptsNanoparticle deliveryGene correctionReversal of splenomegalyPeptide nucleic acidLow off-target effectsVivo correctionGenome editingOff-target effectsGene editingHaematopoietic stem cellsNucleic acidsDonor DNAStem cellsΓPNAΒ-thalassaemiaNanoparticlesDeliveryEditingSCF treatmentTriplex formationThe Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation
Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L, Shin JH, Park JH, Tang WH, Kim ST, Maher SE, Goldsmith-Pestana K, Shan P, Hwa J, Lee PJ, Krause DS, Rothlin CV, McMahon-Pratt D, Bothwell AL. The Wnt Antagonist Dickkopf-1 Promotes Pathological Type 2 Cell-Mediated Inflammation. Immunity 2016, 44: 246-258. PMID: 26872695, PMCID: PMC4758884, DOI: 10.1016/j.immuni.2016.01.008.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntigens, DermatophagoidesAntigens, ProtozoanAsthmaBlood PlateletsCell DifferentiationCells, CulturedCytokinesExtracellular Signal-Regulated MAP KinasesGene Expression RegulationHumansInflammationIntercellular Signaling Peptides and ProteinsLeishmania majorLeishmaniasis, CutaneousMiceMice, Inbred BALB CMice, Inbred C57BLMice, TransgenicModels, AnimalPyroglyphidaeSignal TransductionTh2 CellsTOR Serine-Threonine KinasesWnt ProteinsConceptsCell-mediated inflammationTh2 cell cytokine productionCell cytokine productionLeukocyte-platelet aggregatesLeukocyte infiltrationDkk-1Cytokine productionT helper 2 cellsLeishmania major infectionHouse dust miteTranscription factor c-MafAllergen challengeMajor infectionDust miteImmune responseDickkopf-1Parasitic infectionsGATA-3Pathological roleFunctional inhibitionInflammationC-MafP38 MAPKInfiltrationInfectionLeukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation
Zou S, Teixeira AM, Yin M, Xiang Y, Xavier-Ferrucio J, Zhang PX, Hwa J, Min W, Krause DS. Leukaemia-associated Rho guanine nucleotide exchange factor (LARG) plays an agonist specific role in platelet function through RhoA activation. Thrombosis And Haemostasis 2016, 116: 506-516. PMID: 27345948, PMCID: PMC5845781, DOI: 10.1160/th15-11-0848.Peer-Reviewed Original ResearchConceptsMegakaryocyte maturationPlatelet functionRhoA activationKO plateletsLeukemia-associated Rho guanineΑ-granule releasePlatelet signal transductionSmall molecule-mediated inhibitionExchange factorSignal transductionMyosin light chain phosphorylationRho guanineKO miceBleeding timeHuman megakaryocytesInternal bleedingPlatelet aggregationNormal haemostasisLight chain phosphorylationHuman plateletsVivo assaysPlateletsSpecific roleMiceChain phosphorylation
2015
Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis
Sui Z, Nowak RB, Sanada C, Halene S, Krause DS, Fowler VM. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis. Blood 2015, 126: 520-530. PMID: 25964668, PMCID: PMC4513252, DOI: 10.1182/blood-2014-09-601484.Peer-Reviewed Original ResearchMeSH KeywordsActin CytoskeletonAnimalsApoptosisBlood PlateletsBlotting, WesternCell MembraneCell ProliferationCells, CulturedCytoplasmEmbryo, MammalianFemaleFluorescent Antibody TechniqueHematopoiesisHemorrhageImmunoprecipitationMegakaryocytesMiceMice, KnockoutMicroscopy, ConfocalMicroscopy, Electron, TransmissionMicroscopy, FluorescencePloidiesPolymerizationTropomodulinConceptsPlatelet biogenesisDemarcation membrane systemF-actinTropomodulin-3Organelle distributionProplatelet formationActin polymerizationF-actin cappingF-actin organizationF-actin cytoskeletonWild-type megakaryocytesActin cytoskeletonActin organizationMK differentiationTmod isoformsLarge proplateletsBiogenesisContractile bundlesActin filamentsDMS formationBinds tropomyosinBud sizeMK numberConfocal microscopyCytoskeleton
2014
Nonstochastic Reprogramming from a Privileged Somatic Cell State
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell 2014, 156: 649-662. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.Peer-Reviewed Original ResearchConceptsSomatic cell stateCell statesAcquisition of pluripotencyMurine hematopoietic progenitorsEndogenous Oct4Cell cycle accelerationNonstochastic mannerSomatic cellsProgeny cellsPluripotent fateYamanaka factorsCell cycleHematopoietic progenitorsP53 knockdownPluripotencyReprogrammingCycling populationFactor expressionCellsFibroblastsImportant bottleneckKnockdownProgenitorsFateExpression
2013
Very Small Embryonic‐Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung
Kassmer SH, Jin H, Zhang PX, Bruscia EM, Heydari K, Lee JH, Kim CF, Kassmer SH, Krause DS. Very Small Embryonic‐Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung. Stem Cells 2013, 31: 2759-2766. PMID: 23681901, PMCID: PMC4536826, DOI: 10.1002/stem.1413.Peer-Reviewed Original ResearchConceptsEpithelial cellsSmall embryonic-like stem cellsLung epithelial cellsEmbryonic-like stem cellsStem/progenitor cellsStem cellsDonor miceHematopoietic stem/progenitor cellsBM cellsAdult BMBone marrowSmall embryonicNonhematopoietic cellsProgenitor cellsBroad differentiation potentialVSELsEngraftmentLungHigh rateNumerous reportsAdult stem cellsDifferentiation potentialCellsFirst reportReportReduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced Caveolin-1 Promotes Hyperinflammation due to Abnormal Heme Oxygenase-1 Localization in Lipopolysaccharide-Challenged Macrophages with Dysfunctional Cystic Fibrosis Transmembrane Conductance Regulator. The Journal Of Immunology 2013, 190: 5196-5206. PMID: 23606537, PMCID: PMC3711148, DOI: 10.4049/jimmunol.1201607.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAnimalsCaveolin 1Cells, CulturedChildChild, PreschoolCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorFemaleHeme Oxygenase-1HumansInflammationLipopolysaccharidesLung DiseasesMacrophagesMaleMembrane ProteinsMiceMice, KnockoutNasal PolypsReactive Oxygen SpeciesSignal TransductionToll-Like Receptor 4Young AdultConceptsCav-1 expressionHeme oxygenase-1Dysfunctional cystic fibrosis transmembrane conductance regulatorCystic fibrosis transmembrane conductance regulatorCell surfaceFibrosis transmembrane conductance regulatorProtein caveolin-1Cellular redox statusCell surface localizationCellular oxidative stateTransmembrane conductance regulatorHO-1 enzymePositive feed-forward loopCystic fibrosis macrophagesNegative regulatorCaveolin-1Conductance regulatorCell survivalHO-1 deliverySurface localizationRedox statusMΦ responsesHO-1/CO pathwayPathwayPotential targetDynamic Migration and Cell‐Cell Interactions of Early Reprogramming Revealed by High‐Resolution Time‐Lapse Imaging
Megyola CM, Gao Y, Teixeira AM, Cheng J, Heydari K, Cheng E, Nottoli T, Krause DS, Lu J, Guo S. Dynamic Migration and Cell‐Cell Interactions of Early Reprogramming Revealed by High‐Resolution Time‐Lapse Imaging. Stem Cells 2013, 31: 895-905. PMID: 23335078, PMCID: PMC4309553, DOI: 10.1002/stem.1323.Peer-Reviewed Original ResearchConceptsCell-cell interactionsEarly reprogrammingDynamic cell-cell interactionsSingle-cell resolutionTime-lapse microscopyE-cadherin inhibitionTime-lapse imagingPluripotency inductionInduced pluripotencyGranulocyte-monocyte progenitorsPluripotent cellsReprogrammingMolecular mechanismsCell resolutionCell migrationCellular interactionsGenetic makeupE-cadherinSatellite coloniesExperimental systemHematopoietic stateSource cellsRare cellsColoniesComplex mechanismsVery small embryonic‐like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues
Kassmer SH, Krause DS. Very small embryonic‐like cells: Biology and function of these potential endogenous pluripotent stem cells in adult tissues. Molecular Reproduction And Development 2013, 80: 677-690. PMID: 23440892, PMCID: PMC3740022, DOI: 10.1002/mrd.22168.Peer-Reviewed Original ResearchConceptsEmbryonic-like cellsSmall embryonic-like cellsAdult tissuesCell typesPrimordial germ cellsGerm layer lineagesMarkers of pluripotentSingle-cell levelPluripotent stem cellsCell cycle inhibitory genesSimilar cell typesMurine bone marrowPluripotency genesMurine VSELsNon-hematopoietic cellsCell cycleGerm cellsInhibitory genesStress conditionsStem cellsDifferent phenotypesGenesRegenerative medicineVSELsCells