2023
Case report of a patient with unclassified tauopathy with molecular and neuropathological features of both progressive supranuclear palsy and corticobasal degeneration
Koga S, Metrick M, Golbe L, Santambrogio A, Kim M, Soto-Beasley A, Walton R, Baker M, De Castro C, DeTure M, Russell D, Navia B, Sandiego C, Ross O, Vendruscolo M, Caughey B, Dickson D. Case report of a patient with unclassified tauopathy with molecular and neuropathological features of both progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathologica Communications 2023, 11: 88. PMID: 37264457, PMCID: PMC10236843, DOI: 10.1186/s40478-023-01584-z.Peer-Reviewed Original ResearchConceptsSuperior frontal gyrusFrontal gyrusConsistent with corticobasal degenerationConsistent with progressive supranuclear palsyMotor cortexCorticobasal degenerationProgressive supranuclear palsyPosterior cortical areasPresentation of corticobasal degenerationSubtype of frontotemporal lobar degenerationRichardson's syndromeBrain regionsOccipital cortexSubcortical structuresCaudate nucleusFrontotemporal lobar degenerationTau PET scansSubstantia nigraGlobus pallidusCorticobasal syndromeGyrusSupranuclear palsyCortexCortical areasClinical presentation of progressive supranuclear palsy
2022
PROGRESS IN DEVELOPING A LIGHT‐STABLE 4R TAU PET IMAGING AGENT: APN‐1701 FIH
Tempest P, Lin Y, Tai C, Ono M, Russell D, Sandiego C, Carroll V, Gunn R, Margolin R, Higuchi M, Jang M. PROGRESS IN DEVELOPING A LIGHT‐STABLE 4R TAU PET IMAGING AGENT: APN‐1701 FIH. Alzheimer's & Dementia 2022, 18 DOI: 10.1002/alz.063028.Peer-Reviewed Original ResearchAD subjectsMulticenter phase 2 clinical trialAlzheimer's diseasePhase 2 clinical trialTau PET tracersPET imaging agentSimilar brain regionsCortical uptakeTest-retest studyCN subjectsClinical trialsNormal subjectsTau tracersBrain regionsSUV valuesDiverse tauopathiesPET tracersSame rank orderSUVR imagesImaging agentImaging profileDiseasePROGRESS IN DEVELOPING A LIGHT‐STABLE 4R TAU PET IMAGING AGENT: APN‐1701 FIH
Tempest P, Lin Y, Tai C, Ono M, Russell D, Sandiego C, Gunn R, Carroll V, Margolin R, Kao T, Higuchi M, Jang M. PROGRESS IN DEVELOPING A LIGHT‐STABLE 4R TAU PET IMAGING AGENT: APN‐1701 FIH. Alzheimer's & Dementia 2022, 18 DOI: 10.1002/alz.063025.Peer-Reviewed Original ResearchAD subjectsMulticenter phase 2 clinical trialAlzheimer's diseasePhase 2 clinical trialTau PET tracersPET imaging agentSimilar brain regionsCortical uptakeTest-retest studyCN subjectsClinical trialsNormal subjectsTau tracersBrain regionsSUV valuesDiverse tauopathiesPET tracersSame rank orderSUVR imagesImaging agentImaging profileDisease
2000
Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse
Messer C, Eisch A, Carlezon W, Whisler K, Shen L, Wolf D, Westphal H, Collins F, Russell D, Nestler E. Role for GDNF in Biochemical and Behavioral Adaptations to Drugs of Abuse. Neuron 2000, 26: 247-257. PMID: 10798408, PMCID: PMC4451194, DOI: 10.1016/s0896-6273(00)81154-x.Peer-Reviewed Original ResearchConceptsVentral tegmental areaDrugs of abuseAnti-GDNF antibodyIntra-VTA infusionDopaminergic brain regionsSubsequent drug exposureChronic morphineDrug exposureTegmental areaChronic cocaineCocaine exposureRewarding effectsGDNF geneGDNF pathwayBrain regionsGDNFBehavioral sensitivityCocaineDrugsMorphineInfusionPresent studyExposureNull mutationAbuse
1996
Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens.
Widnell K, Self D, Lane S, Russell D, Vaidya V, Miserendino M, Rubin C, Duman R, Nestler E. Regulation of CREB expression: in vivo evidence for a functional role in morphine action in the nucleus accumbens. Journal Of Pharmacology And Experimental Therapeutics 1996, 276: 306-15. PMID: 8558448.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBase SequenceCyclic AMP Response Element-Binding ProteinCyclic AMP-Dependent Protein KinasesDown-RegulationGTP-Binding ProteinsMaleMolecular Sequence DataMorphineNucleus AccumbensOligonucleotides, AntisenseProtein Sorting SignalsRatsRats, Sprague-DawleyRNA, MessengerSensitivity and SpecificitySignal TransductionConceptsCAMP response element-binding proteinEffects of morphineNucleus accumbensBrain regionsCREB levelsChronic opiate administrationCAMP pathwayTranscription factor cAMP response element-binding proteinResponse element-binding proteinProperties of opiatesMorphine administrationAnti-sense oligonucleotide strategyMorphine actionOpiate administrationSustained decreaseLong-term effectsElement-binding proteinNervous systemCREB expressionOpiate addictionCREB immunoreactivityDetectable toxicityVivo evidenceMorphineAccumbens
1994
Regulation of expression of cAMP response element-binding protein in the locus coeruleus in vivo and in a locus coeruleus-like cell line in vitro.
Widnell K, Russell D, Nestler E. Regulation of expression of cAMP response element-binding protein in the locus coeruleus in vivo and in a locus coeruleus-like cell line in vitro. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 10947-10951. PMID: 7971989, PMCID: PMC45143, DOI: 10.1073/pnas.91.23.10947.Peer-Reviewed Original ResearchConceptsLocus coeruleusCREB expressionCREB immunoreactivityCell linesChronic morphine administrationLocus coeruleus neuronsCRE-binding activityResponse element-binding proteinCAMP pathwayCREB mRNA levelsCAMP response element-binding proteinMorphine administrationChronic morphineCoeruleus neuronsBrain regionsCRE bindingOpiate addictionElement-binding proteinPC12 pheochromocytoma cellsCAMP response elementMRNA levelsPheochromocytoma cellsCoeruleusImmunoreactivityCREB mRNA