2022
Gut colonization by Bacteroides requires translation by an EF‐G paralog lacking GTPase activity
Han W, Peng B, Wang C, Townsend G, Barry N, Peske F, Goodman A, Liu J, Rodnina M, Groisman E. Gut colonization by Bacteroides requires translation by an EF‐G paralog lacking GTPase activity. The EMBO Journal 2022, 42: e112372. PMID: 36472247, PMCID: PMC9841332, DOI: 10.15252/embj.2022112372.Peer-Reviewed Original ResearchConceptsEF-G1Protein synthesisGTPase activityGuanosine triphosphateElongation factor GCarbon starvationCellular processesStarvation conditionsBacteroides thetaiotaomicronFactor GSingular abilityAmino acidsCell growthParalogsMurine cecumTranslocationGut colonizationColonizationCellsRibosomesProteinStarvationThetaiotaomicronBacteriaFitnessAn essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria
Gupta K, Gwin C, Rahlwes K, Biegas K, Wang C, Park J, Liu J, Swarts B, Morita Y, Rego E. An essential periplasmic protein coordinates lipid trafficking and is required for asymmetric polar growth in mycobacteria. ELife 2022, 11: e80395. PMID: 36346214, PMCID: PMC9678360, DOI: 10.7554/elife.80395.Peer-Reviewed Original ResearchConceptsPeriplasmic proteinsPolar growthNew cell wall materialOld poleQuantitative time-lapse imagingAsymmetric polar growthCell wall synthesisCell envelope compositionCell wall materialTime-lapse imagingCellular asymmetryEssential proteinsBacterial geneticsEssential transporterSingle geneWall synthesisLipid traffickingPopulation of cellsPlasma membraneTMM transportUnknown functionBroad functionsMycolic acidsTrehalose monomycolateEnvelope compositionCryo-EM structures of prefusion SIV envelope trimer
Gorman J, Wang C, Mason R, Nazzari A, Welles H, Zhou T, Bess J, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele B, Lifson J, Liu J, Roederer M, Kwong P. Cryo-EM structures of prefusion SIV envelope trimer. Nature Structural & Molecular Biology 2022, 29: 1080-1091. PMID: 36344847, DOI: 10.1038/s41594-022-00852-1.Peer-Reviewed Original Research
2019
Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography
Wang C, Tu J, Liu J, Molineux IJ. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nature Microbiology 2019, 4: 1049-1056. PMID: 30886360, PMCID: PMC6533119, DOI: 10.1038/s41564-019-0403-z.Peer-Reviewed Original ResearchConceptsCryo-electron tomographyOuter membraneInfection initiationCell surfaceBacterial cell envelopeSalmonella enterica serovar TyphimuriumGenome translocationGram-negative bacteriaEnterica serovar TyphimuriumTail needleCytoplasmic membraneSecond proteinExtracellular channelsCell envelopePhage P22Successful infectionCell cytoplasmSerovar TyphimuriumSuch virionsGenomeCytoplasmProteinO-antigenPhagesAssembles
2017
Bacteriophage T7 DNA Translocation during Infection is Bolstered by the Host ATP Synthase Complex
Morado D, Wang C, Hu B, Molineux I, Liu J. Bacteriophage T7 DNA Translocation during Infection is Bolstered by the Host ATP Synthase Complex. Biophysical Journal 2017, 112: 335a. DOI: 10.1016/j.bpj.2016.11.1814.Peer-Reviewed Original ResearchVisualizing Infection Initiation of Bacteriophage P22 by Cryo-Electron Tomography
Wang C, Tu J, Hu B, Molineux I, Liu J. Visualizing Infection Initiation of Bacteriophage P22 by Cryo-Electron Tomography. Biophysical Journal 2017, 112: 314a. DOI: 10.1016/j.bpj.2016.11.1704.Peer-Reviewed Original ResearchFurther characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize
Wang Q, Zhang C, Wang C, Qian Y, Li Z, Hong J, Zhou X. Further characterization of Maize chlorotic mottle virus and its synergistic interaction with Sugarcane mosaic virus in maize. Scientific Reports 2017, 7: 39960. PMID: 28059116, PMCID: PMC5216416, DOI: 10.1038/srep39960.Peer-Reviewed Original ResearchConceptsCorn lethal necrosis diseaseMCMV-infected cellsCo-infected cellsInfectious cloneMCMV infectionSugarcane mosaic virusCytopathological changesMCMVMCMV isolatesVirusInjection procedureNecrosis diseaseEpidemiologyMaize chlorotic mottle virusMosaic virusLethal necrosis diseaseFurther characterizationSynergistic interactionCellsInfectionDiseaseMottle virus
2015
Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis
Wang CY, Zhang QF, Gao YZ, Xie L, Li HM, Hong J, Zhang CX. Uncoating Mechanism of Carnation Mottle Virus Revealed by Cryo-EM Single Particle Analysis. Scientific Reports 2015, 5: 14825. PMID: 26442593, PMCID: PMC4595797, DOI: 10.1038/srep14825.Peer-Reviewed Original ResearchInsight into the three-dimensional structure of maize chlorotic mottle virus revealed by Cryo-EM single particle analysis
Wang CY, Zhang QF, Gao YZ, Zhou XP, Ji G, Huang XJ, Hong J, Zhang CX. Insight into the three-dimensional structure of maize chlorotic mottle virus revealed by Cryo-EM single particle analysis. Virology 2015, 485: 171-178. PMID: 26275511, DOI: 10.1016/j.virol.2015.07.014.Peer-Reviewed Original ResearchMorphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture
Cao X, Jin X, Zhang X, Li Y, Wang C, Wang X, Hong J, Wang X, Li D, Zhang Y. Morphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture. Journal Of Virology 2015, 89: 6184-6195. PMID: 25833056, PMCID: PMC4474299, DOI: 10.1128/jvi.00401-15.Peer-Reviewed Original ResearchConceptsMembrane-bound viral replication complexVirus replication complexesViral replication complexPositive-strand RNA virusesElectron tomographic analysisEndoplasmic reticulum membraneReplication complexVesicle packetsRNA virusesProtein p23Reticulum membraneNicotiana benthamiana cellsBlack scorch virusHost intracellular membranesDouble-stranded RNAProgeny viral RNAPositive-strand RNAThree-dimensional architectureViral replication intermediatesN. benthamianaFamily TombusviridaeReplication proteinsER membraneP23 proteinIntracellular membranes
2013
Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea
Xue J, Zhang XQ, Xu HJ, Fan HW, Huang HJ, Ma XF, Wang CY, Chen JG, Cheng JA, Zhang CX. Molecular characterization of the flightin gene in the wing-dimorphic planthopper, Nilaparvata lugens, and its evolution in Pancrustacea. Insect Biochemistry And Molecular Biology 2013, 43: 433-443. PMID: 23459170, DOI: 10.1016/j.ibmb.2013.02.006.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsArthropod ProteinsBlotting, WesternCloning, MolecularDaphniaDrosophila melanogasterDrosophila ProteinsEvolution, MolecularFemaleFilaminsGene Expression RegulationHemipteraInsect ProteinsMaleMicroscopy, Electron, TransmissionMolecular Sequence DataMuscle ProteinsNymphPhylogenyPolymerase Chain ReactionRNA, Double-StrandedSequence AlignmentSex CharacteristicsConceptsBrown planthopperNilaparvata lugensMacropterous adultsDestructive rice pestsWing-dimorphic planthopperFlight muscle functionBrachypterous onesDorsal longitudinal musclesLong-distance migrationFemale brown planthopperDrosophila melanogasterArthropod speciesFlightin geneBPH adultsCrustacean speciesWing dimorphismRice pestsFlightinJuvenile instarsInsectsFunctional variationMolecular characterizationKey roleFlight apparatusSpecies