Chenxiang Lin, PhD
Associate Professor of Cell Biology and of Biomedical EngineeringDownloadHi-Res Photo
Cards
Appointments
Cell Biology
Primary
Additional Titles
Associate Director, Nanobiology Institute
Contact Info
Appointments
Cell Biology
Primary
Additional Titles
Associate Director, Nanobiology Institute
Contact Info
Appointments
Cell Biology
Primary
Additional Titles
Associate Director, Nanobiology Institute
Contact Info
About
Titles
Associate Professor of Cell Biology and of Biomedical Engineering
Associate Director, Nanobiology Institute
Appointments
Cell Biology
Associate Professor TenurePrimary
Other Departments & Organizations
Education & Training
- Research Fellow
- Harvard Medical School (2012)
- PhD
- Arizona State University (2009)
- BS
- Peking University (2004)
Research
Overview
Medical Subject Headings (MeSH)
Biophysics; Biosensing Techniques; Cell Biology; Cell Membrane; DNA; Lipid Bilayers; Membrane Fusion; Membranes, Artificial; Nanostructures; Nanotechnology; Nuclear Pore; Nucleic Acid Probes; Reference Standards
ORCID
0000-0001-7041-1946- View Lab Website
Chenxiang Lin Lab
Research at a Glance
Yale Co-Authors
Frequent collaborators of Chenxiang Lin's published research.
Publications Timeline
A big-picture view of Chenxiang Lin's research output by year.
Research Interests
Research topics Chenxiang Lin is interested in exploring.
Qiancheng Xiong
Longfei Liu
Chunxiang Wu
C. Patrick Lusk, PhD
Yong Xiong, PhD
Erdem Karatekin, PhD
11Publications
795Citations
DNA
Nanostructures
Nanotechnology
Cell Membrane
Lipid Bilayers
Nuclear Pore
Publications
2024
DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force.
Chung M, Zhou K, Powell JT, Lin C, Schwartz MA. DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force. ACS Nano 2024, 18: 27590-27596. PMID: 39344156, DOI: 10.1021/acsnano.4c08663.Peer-Reviewed Original Research In PressDNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force
Chung M, Zhou K, Powell J, Lin C, Schwartz M. DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force. ACS Nano 2024, 18: 27590-27596. PMID: 39344156, DOI: 10.1021/acsnano.4c08663.Peer-Reviewed Original ResearchAltmetricMeSH Keywords and ConceptsConceptsTalin rod domainNegative-stain electron microscopyDouble-stranded DNADNA clampProtein functionRod domainCryptic sitesProtein interactionsMolecular clampCellular mechanotransductionStudy proteinsBiochemical studiesCell biologyAdult physiologyProtein conformationTalinProteinBiochemical scaleMultiple diseasesDNAARPC5LVinculinStructural analysisEmbryogenesisDNA-based devices
2023
Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels
Shen Q, Feng Q, Wu C, Xiong Q, Tian T, Yuan S, Shi J, Bedwell G, Yang R, Aiken C, Engelman A, Lusk C, Lin C, Xiong Y. Modeling HIV-1 nuclear entry with nucleoporin-gated DNA-origami channels. Nature Structural & Molecular Biology 2023, 30: 425-435. PMID: 36807645, PMCID: PMC10121901, DOI: 10.1038/s41594-023-00925-9.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsNuclear pore complexHIV-1 nuclear entryNuclear entryNuclear importNPC central channelPore complexHost nucleusCapsid dockingVirus genomeAffinity gradientNup153Central channelMechanistic insightsMolecular interactionsCapsidNucleoporinsNup358Nup62GenomeNucleusVirusDockingVirus-1 infectionImportComplexes
2022
Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity
Shen Q, Xiong Q, Zhou K, Feng Q, Liu L, Tian T, Wu C, Xiong Y, Melia T, Lusk C, Lin C. Functionalized DNA-Origami-Protein Nanopores Generate Large Transmembrane Channels with Programmable Size-Selectivity. Journal Of The American Chemical Society 2022, 145: 1292-1300. PMID: 36577119, PMCID: PMC9852090, DOI: 10.1021/jacs.2c11226.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsExchange of macromoleculesCholesterol-rich membranesHybrid nanoporesSynthetic biologyBiophysical toolsSynthetic cellsTransmembrane channelsTransmembrane nanoporesDNA ringsProtein nanoporeCell membraneBacterial toxinsDNA origami techniqueLipid membranesAnalytical chemistryMacromolecule sizeDNA origamiMembraneProgrammable sizeNanoporesSized poresNucleoporinsAverage inner diameterCellsPneumolysinActuating tension-loaded DNA clamps drives membrane tubulation
Liu L, Xiong Q, Xie C, Pincet F, Lin C. Actuating tension-loaded DNA clamps drives membrane tubulation. Science Advances 2022, 8: eadd1830. PMID: 36223466, PMCID: PMC9555772, DOI: 10.1126/sciadv.add1830.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsDNA clampMembrane tubulationMembrane dynamicsMembrane-remodeling eventsVesicle tubulationConformational changesSpatiotemporal controlDNA signalsCell membraneDNA nanostructuresTubulationMembrane deformationClosed stateOpen stateSelf-assembled DNA nanostructuresOrganismsProteinMembrane tubeArtificial systemsTube widthMembraneDynamics
2021
DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins
Shen Q, Tian T, Xiong Q, Fisher P, Xiong Y, Melia TJ, Lusk CP, Lin C. DNA-Origami NanoTrap for Studying the Selective Barriers Formed by Phenylalanine-Glycine-Rich Nucleoporins. Journal Of The American Chemical Society 2021, 143: 12294-12303. PMID: 34324340, PMCID: PMC8363578, DOI: 10.1021/jacs.1c05550.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsNuclear pore complexFundamental biological activitiesRich nucleoporinsNuclear transport receptorsSelective barrierPhenylalanine-GlycineStructure-function relationshipsPore complexNuclear transportTransport receptorsProtein assembliesFG-NupsMolecular trafficFG interactionsFG networkBiomolecular machinesNucleoporinsCritical determinantDNA nanotechnologyBiomimetic constructsBiological activityDiffusion barrierModel cargoNanotrapsSpatial arrangementSorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation
Yang Y, Wu Z, Wang L, Zhou K, Xia K, Xiong Q, Liu L, Zhang Z, Chapman ER, Xiong Y, Melia TJ, Karatekin E, Gu H, Lin C. Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nature Chemistry 2021, 13: 335-342. PMID: 33785892, PMCID: PMC8049973, DOI: 10.1038/s41557-021-00667-5.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and Concepts
2019
A programmable DNA-origami platform for studying lipid transfer between bilayers
Bian X, Zhang Z, Xiong Q, De Camilli P, Lin C. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nature Chemical Biology 2019, 15: 830-837. PMID: 31320758, PMCID: PMC6650167, DOI: 10.1038/s41589-019-0325-3.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsLipid transferNon-vesicular lipid transportSynaptotagmin-like mitochondrial lipid-binding protein (SMP) domainLipid transportMembrane contact sitesLipid transport proteinsSMP domainImportant physiological roleDNA origami platformProtein domainsUnstructured linkerContact sitesSynaptotagmin-1Förster resonance energy transferPhysiological roleResonance energy transferMechanistic insightsDNA origami nanostructuresAcceptor liposomes
2018
Vesicle Tubulation with Self‐Assembling DNA Nanosprings
Grome MW, Zhang Z, Pincet F, Lin C. Vesicle Tubulation with Self‐Assembling DNA Nanosprings. Angewandte Chemie International Edition 2018, 57: 5330-5334. PMID: 29575478, PMCID: PMC5924453, DOI: 10.1002/anie.201800141.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsMembrane-deforming proteinsDNA origami designMembrane tubulationMembrane tubulesMembrane curvatureMembrane surface coverageVesicle tubulationDNA structureLipid bilayersTubulationNanospringsTube morphologyIntricate interplayArtificial nanomachinesVesicle deformationSpherical vesiclesNanotechnologyMajor goalProteinDNAVesiclesNanomachinesBioengineeringDetergentsMorphologyA Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement
Fisher PDE, Shen Q, Akpinar B, Davis LK, Chung KKH, Baddeley D, Šarić A, Melia TJ, Hoogenboom BW, Lin C, Lusk CP. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement. ACS Nano 2018, 12: 1508-1518. PMID: 29350911, PMCID: PMC5834394, DOI: 10.1021/acsnano.7b08044.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsTransport channelsAtomic force microscopyMolecular dynamics simulationsHigh-speed atomic force microscopyDNA origami platformFG domainsNuclear pore complexes (NPCs) formChannel mimicsCentral transport channelNuclear pore proteinsForce microscopyDNA origamiNuclear transport receptorsDynamics simulationsSelective transportNanopore confinementMolecular exchangePermeability propertiesDNA cylindersChemical compositionFG networkPore proteinsPolymer modelTransport receptorsCollective properties
Academic Achievements & Community Involvement
honor Odyssey Award
Regional AwardRichard and Susan Smith Family FoundationDetails09/01/2020United Stateshonor Director's New Innovator Award
National AwardNational Institutes of HealthDetails09/30/2014United States
News
News
- February 19, 2023Source: Nature Structural & Molecular Biology
Modeling HIV-1 nuclear entry with DNA-origami nuclear pore mimics
- May 02, 2022Source: Nature Methods
A better way to PAINT your sample for super-resolution imaging
- March 30, 2021Source: Nature Chemistry
DNA helps sort out liposomes and biophysical problems
- February 07, 2021Source: BioRxiv
A DNA-origami NanoTrap for studying the diffusion barriers
Get In Touch
Contacts
Administrative Support
Locations
Chenxiang Lin Lab
Lab
West Campus Integrative Science & Technology Center
850 West Campus Drive, Rm 213
West Haven, CT 06516