1996
Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system
Russo GS, Bruce CJ. Neurons in the supplementary eye field of rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal Of Neurophysiology 1996, 76: 825-848. PMID: 8871203, DOI: 10.1152/jn.1996.76.2.825.Peer-Reviewed Original ResearchConceptsSupplementary eye fieldPresaccadic activitySaccadic eye movementsSEF neuronsOculocentric coordinate systemEye fieldEccentric orbital positionEye positionEye movementsInitial eye positionBeginning of saccadesMemory saccade taskFixation pointCentral fixation pointOculocentric coordinatesVisual cue presentationMacaque monkeysOculomotor rangeRhesus monkeysCraniocentric coordinatesNeuronsSaccade directionVisual targetsStimulus directionSaccades
1989
Resolution of metabolic columns by a double-label 2-DG technique: interdigitation and coincidence in visual cortical areas of the same monkey
Friedman H, Bruce C, Goldman-Rakic P. Resolution of metabolic columns by a double-label 2-DG technique: interdigitation and coincidence in visual cortical areas of the same monkey. Journal Of Neuroscience 1989, 9: 4111-4121. PMID: 2687438, PMCID: PMC6569629, DOI: 10.1523/jneurosci.09-12-04111.1989.Peer-Reviewed Original ResearchConceptsOcular dominance columnsExtrastriate areas V2Same monkeysVisual cortical areasVisual areas V1Cortical visual areas V1Alternate eyesX-ray filmsDouble-label methodMonocular crescentOptic discCortical areasMetabolic activitySeparate animalsArea V2Area V1Cortical columnsMetabolic differencesEyesMonkeysSame sectionPresent studyDifferential sensitivitySame subjectsV1
1986
Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey
Bruce C, Desimone R, Gross C. Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. Journal Of Neurophysiology 1986, 55: 1057-1075. PMID: 3711967, DOI: 10.1152/jn.1986.55.5.1057.Peer-Reviewed Original ResearchConceptsSuperior temporal polysensory areaStriate lesionsIntact monkeysContralateral visual fieldSuperior colliculusHemifield contralateralStriate cortexUnilateral removalPolysensory areaGeniculostriate systemVisual responsesVisual hemifieldVisual fieldReceptive fieldsPrimate cerebral cortexVisual stimuliContralateral visual hemifieldStimulus motionBilateral receptive fieldsCerebral cortexIpsilateral hemifieldReceptive field sizeContralateralMacaque monkeysContralateral field
1982
Face recognition by monkeys: Absence of an inversion effect
Bruce C. Face recognition by monkeys: Absence of an inversion effect. Neuropsychologia 1982, 20: 515-521. PMID: 7145077, DOI: 10.1016/0028-3932(82)90025-2.Peer-Reviewed Original Research
1975
Quantitative analysis of unit response patterns in cat visual cortex
Pfingst B, Bruce C, Shinkman P. Quantitative analysis of unit response patterns in cat visual cortex. Experimental Neurology 1975, 46: 215-228. PMID: 1109339, DOI: 10.1016/0014-4886(75)90044-8.Peer-Reviewed Original ResearchConceptsCat visual cortexArea 18Visual cortexLong-latency componentsResponse patternsPeristimulus time histogramsContralateral eyeArea 17Cortical areasInhibitory periodExtracellular recordingsFlash stimuliTime histogramsResponse latency increasesLatency increaseExcitatoryCortexInhibitory activityTrial varianceSame vertical columnCellsDurationResponsePeriodNearby cells