2023
DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres
Malla A, Yu H, Farris D, Kadimi S, Lam T, Cox A, Smith Z, Lesch B. DOT1L bridges transcription and heterochromatin formation at mammalian pericentromeres. EMBO Reports 2023, 24: e56492. PMID: 37317657, PMCID: PMC10398668, DOI: 10.15252/embr.202256492.Peer-Reviewed Original ResearchConceptsMouse embryonic stem cellsBurst of transcriptionMajor satellite repeatsLong-term silencingRepetitive DNA elementsEmbryonic stem cellsSatellite transcriptionHeterochromatin stabilityHeterochromatin formationHeterochromatin structureChromatin stateSatellite repeatsGenome stabilityGenome integrityPericentromeric repeatsPericentromeric heterochromatinGenome featuresDNA elementsHistone H3Transcriptional activationHistone methyltransferaseRepetitive elementsDOT1L lossRepeat elementsTranscript productionDOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement
Malla A, Rainsford S, Smith Z, Lesch B. DOT1L promotes spermatid differentiation by regulating expression of genes required for histone-to-protamine replacement. Development 2023, 150 PMID: 37082969, PMCID: PMC10259660, DOI: 10.1242/dev.201497.Peer-Reviewed Original ResearchConceptsHistone replacementMale sterilityProtamine exchangeSpermatid differentiationHistone H3 lysine 79Chromatin remodeling factorsRNA polymerase IIH3 lysine 79Expression of genesMature sperm headSperm headPostmeiotic germ cellsHistone methyltransferase DOT1LPolymerase IILysine 79Embryonic lethalityRemodeling factorsProtamine transitionProtamine replacementTranscriptional dysregulationMethyltransferase DOT1LIndispensable regulatorDOT1LHistonesGerm cells
2016
Parallel evolution of male germline epigenetic poising and somatic development in animals
Lesch BJ, Silber SJ, McCarrey JR, Page DC. Parallel evolution of male germline epigenetic poising and somatic development in animals. Nature Genetics 2016, 48: 888-894. PMID: 27294618, DOI: 10.1038/ng.3591.Peer-Reviewed Original Research
2014
Poised chromatin in the mammalian germ line
Lesch BJ, Page DC. Poised chromatin in the mammalian germ line. Development 2014, 141: 3619-3626. PMID: 25249456, PMCID: PMC4197577, DOI: 10.1242/dev.113027.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsMammalian germ lineGerm cell identityCell identityGerm lineMammalian germ cellsEmbryonic stem cellsChromatin stateEpigenetic inheritanceHistone modificationsRegulatory genesGene activationDNA methylationEpigenetic featuresChromatinGerm cellsStem cellsSomatic developmentGenesPromoterFetal stageTotipotencyCellsMeiosisGametogenesisRepressionA Chromatin-Dependent Role of the Fragile X Mental Retardation Protein FMRP in the DNA Damage Response
Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stützer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y. A Chromatin-Dependent Role of the Fragile X Mental Retardation Protein FMRP in the DNA Damage Response. Cell 2014, 157: 869-881. PMID: 24813610, PMCID: PMC4038154, DOI: 10.1016/j.cell.2014.03.040.Peer-Reviewed Original ResearchConceptsDNA damage responseMental retardation protein FMRPProtein FMRPFragile X syndromeDDR machineryDamage responseChromatin-binding proteinsTandem Tudor domainTranslation of proteinsX syndromeChromatin interfaceFMRP bindsTudor domainMeiotic chromosomesGenomic stabilityFMRPDevelopmental processesMouse spermatogenesisGametogenesisDependent mannerSynaptic functionMachineryProteinChromatinImportant role