2022
Complex regulation of fatty liver disease
Ginsberg HN, Mani A. Complex regulation of fatty liver disease. Science 2022, 376: 247-248. PMID: 35420931, PMCID: PMC9619413, DOI: 10.1126/science.abp8276.Peer-Reviewed Original ResearchDyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice
Bhat N, Narayanan A, Fathzadeh M, Kahn M, Zhang D, Goedeke L, Neogi A, Cardone RL, Kibbey RG, Fernandez-Hernando C, Ginsberg HN, Jain D, Shulman G, Mani A. Dyrk1b promotes hepatic lipogenesis by bypassing canonical insulin signaling and directly activating mTORC2 in mice. Journal Of Clinical Investigation 2022, 132: e153724. PMID: 34855620, PMCID: PMC8803348, DOI: 10.1172/jci153724.Peer-Reviewed Original ResearchConceptsDe novo lipogenesisNonalcoholic steatohepatitisInsulin resistanceHepatic lipogenesisElevated de novo lipogenesisNonalcoholic fatty liver diseaseFatty liver diseaseLiver of patientsHepatic glycogen storageHigh-sucrose dietHepatic insulin resistanceFatty acid uptakeMetabolic syndromeLiver diseaseHepatic steatosisTriacylglycerol secretionNovo lipogenesisHepatic insulinTherapeutic targetImpaired activationAcid uptakeGlycogen storageMouse liverLiverLipogenesis
2021
A meta-analysis of microRNA expression profiling studies in heart failure
Gholaminejad A, Zare N, Dana N, Shafie D, Mani A, Javanmard SH. A meta-analysis of microRNA expression profiling studies in heart failure. Heart Failure Reviews 2021, 26: 997-1021. PMID: 33443726, DOI: 10.1007/s10741-020-10071-9.Peer-Reviewed Original Research
2017
Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects
Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, Zhao L, Ju H, Go GW, Cui G, Inayathullah M, Job JK, Rajadas J, Kwei SL, Li MO, Morrison AR, Quertermous T, Mani A, Red-Horse K, Chun HJ. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects. Science Translational Medicine 2017, 9 PMID: 28904225, PMCID: PMC5703224, DOI: 10.1126/scitranslmed.aad4000.Peer-Reviewed Original ResearchConceptsGlucose-lowering effectImpaired glucose utilizationForkhead box protein O1Glucose utilizationType 2 diabetes mellitusEndothelial cellsApelin/APLNRSkeletal muscleTissue fatty acid uptakeType 2 diabetesImportant clinical challengeFatty acid uptakeEndothelial-specific deletionBox protein O1FABP4 inhibitionCardiovascular outcomesPeptide apelinDiabetes mellitusGlucose loweringFatty acidsInsulin sensitivityEndothelial expressionClinical challengeFABP4 expressionMetabolic disorders
2011
Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation
Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, Tellides G, Lifton RP, Mani A. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 1914-1918. PMID: 21245321, PMCID: PMC3033290, DOI: 10.1073/pnas.1019443108.Peer-Reviewed Original ResearchConceptsVascular smooth muscle cell proliferationSmooth muscle cell proliferationLDL receptor-related protein 6Muscle cell proliferationEarly atherosclerosisHuman atherosclerotic coronary arteriesCell proliferationAtherosclerotic coronary arteriesPDGF receptor βPDGF-dependent regulationCoronary arterySmooth muscleVSMC proliferationReceptor βSMC proliferationCell cycle activityAtherosclerosisKey mediatorCritical modulatorProtein 6PDGF SignalingDifferential effectsProliferationFurther investigationCell cycle
1994
Mechanism of desensitization of the cloned vasopressin V1a receptor expressed in Xenopus oocytes
Nathanson MH, Burgstahler AD, Orloff JJ, Mani A, Moyer MS. Mechanism of desensitization of the cloned vasopressin V1a receptor expressed in Xenopus oocytes. American Journal Of Physiology 1994, 267: c94-c103. PMID: 8048495, DOI: 10.1152/ajpcell.1994.267.1.c94.Peer-Reviewed Original ResearchConceptsVasopressin V1a receptorV1a receptorReceptor desensitizationXenopus oocytesCyclic monophosphateMechanism of desensitizationG protein-mediated increasesProtein-mediated increasePretreatment of oocytesSubsequent microinjectionReceptor binding sitesMin of exposureProtein kinase C.Protein kinase CCytosolic Ca2Maximal stimulationDesensitizationReceptorsPhorbol dibutyrateKinase C.Inositol trisphosphateKinase CVasopressinOocytesConfocal microscopy