2022
Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review
Jekel L, Brim WR, von Reppert M, Staib L, Petersen G, Merkaj S, Subramanian H, Zeevi T, Payabvash S, Bousabarah K, Lin M, Cui J, Brackett A, Mahajan A, Omuro A, Johnson MH, Chiang VL, Malhotra A, Scheffler B, Aboian MS. Machine Learning Applications for Differentiation of Glioma from Brain Metastasis—A Systematic Review. Cancers 2022, 14: 1369. PMID: 35326526, PMCID: PMC8946855, DOI: 10.3390/cancers14061369.Peer-Reviewed Original ResearchBrain metastasesDifferentiation of gliomasMagnetic resonance imagingEligible studiesSystematic reviewSingle-center institutionConventional magnetic resonance imagingSpecific clinical circumstancesNon-invasive differentiationQuality of reportingClinical circumstancesPoor reportingClinical practiceModel assessmentResonance imagingMetastasisStudy designGliomasTRIPOD StatementMultiple studiesExternal validationClinical translationAdherenceDifferentiationReview
2018
Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab
Thomas A, Rosenblum M, Karimi S, DeAngelis LM, Omuro A, Kaley TJ. Radiographic patterns of recurrence and pathologic correlation in malignant gliomas treated with bevacizumab. CNS Oncology 2018, 07: 7-13. PMID: 29388793, PMCID: PMC6001559, DOI: 10.2217/cns-2017-0025.Peer-Reviewed Original ResearchConceptsMalignant gliomasRecurrence patternsDiffusion-weighted imaging abnormalitiesDiffusion-weighted imagingStandard clinical settingMG patientsImaging abnormalitiesMRI abnormalitiesPathologic findingsTumor recurrenceRadiographic patternsPathologic correlationBevacizumabClinical settingNecrosisPatientsRecurrenceRecent reportsTumorsGliomasAbnormalitiesLeptomeningealSurgery
2015
Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma
de la Fuente MI, Young RJ, Rubel J, Rosenblum M, Tisnado J, Briggs S, Arevalo-Perez J, Cross JR, Campos C, Straley K, Zhu D, Dong C, Thomas A, Omuro AA, Nolan CP, Pentsova E, Kaley TJ, Oh JH, Noeske R, Maher E, Choi C, Gutin PH, Holodny AI, Yen K, DeAngelis LM, Mellinghoff IK, Thakur SB. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro-Oncology 2015, 18: 283-290. PMID: 26691210, PMCID: PMC4724186, DOI: 10.1093/neuonc/nov307.Peer-Reviewed Original ResearchConceptsTumor volumeDisease monitoringIsocitrate dehydrogenase (IDH) mutant gliomasProton magnetic resonance spectroscopyConsecutive glioma patientsMR imaging protocolMagnetic resonance spectroscopyCytoreductive therapyTumor levelsLarge tumorsTumor gradeSmall tumorsGlioma patientsGlioma imagingGlioma therapyClinical practiceClinical implicationsRoutine MRTumor cellularityTumor cellsIDH-mutant gliomasGliomasMetabolite RImaging protocolMitotic indexIs Next Generation Sequencing (NGS) Ready for Routine Clinical Practice in Gliomas? Results of a Prospective Study Utilizing the MSK-IMPACT Assay
Omuro A, Zehir A, Cheng D, Berger M, Hyman D, Solit D, Baselga J, Ladanyi M, Arcila M, Hameed M, Sabbatini P, DeAngelis L, Gutin P, Rosenblum M, Mellinghoff I, Tabar V, Chan T, Briggs S, Huse J, Brennan C. Is Next Generation Sequencing (NGS) Ready for Routine Clinical Practice in Gliomas? Results of a Prospective Study Utilizing the MSK-IMPACT Assay. Journal Of Clinical Oncology 2015, 33: 2057-2057. DOI: 10.1200/jco.2015.33.15_suppl.2057.Peer-Reviewed Original ResearchMulticenter Phase I Dose Escalation Study of Hypofractionated Stereotactic Radiotherapy with Bevacizumab in the Treatment of Recurrent Malignant Glioma (S43.005)
Neil E, Clarke J, Beal K, Gutin P, Igor B, Kaley T, Lassman A, Perezic-Mustafa M, Young R, Omuro A. Multicenter Phase I Dose Escalation Study of Hypofractionated Stereotactic Radiotherapy with Bevacizumab in the Treatment of Recurrent Malignant Glioma (S43.005). Neurology 2015, 84 DOI: 10.1212/wnl.84.14_supplement.s43.005.Peer-Reviewed Original ResearchGlutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo
Venneti S, Dunphy MP, Zhang H, Pitter KL, Zanzonico P, Campos C, Carlin SD, La Rocca G, Lyashchenko S, Ploessl K, Rohle D, Omuro AM, Cross JR, Brennan CW, Weber WA, Holland EC, Mellinghoff IK, Kung HF, Lewis JS, Thompson CB. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine 2015, 7: 274ra17. PMID: 25673762, PMCID: PMC4431550, DOI: 10.1126/scitranslmed.aaa1009.Peer-Reviewed Original ResearchConceptsPositron emission tomographyPermeable blood-brain barrierChemo/radiation therapyHigh tumor/background ratiosClear tumor delineationDecreased tumor burdenHigh background uptakeTumor/background ratiosBlood-brain barrierAltered glucose metabolismHuman glioma patientsVivo positron emission tomographyProgressive diseaseTumor burdenMetabolic evaluationBrain uptakeClinical managementTumor avidityGlioma patientsRadiation therapyGlucose metabolismBackground uptakeEmission tomographyGliomasCancer cells
2014
TM-15GLUTAMINE BASED PET IMAGING FACILITATES ENHANCED METABOLIC DETECTION OF GLIOMAS IN VIVO
Venneti S, Dunphy M, Zhang H, Pitter K, Campos C, Carlin S, Lyashchenko S, Plöessl C, Rohle D, Omuro A, Cross J, Brennan C, Weber W, Holland E, Mellinghoff I, Kung H, Lewis J, Thompson C. TM-15GLUTAMINE BASED PET IMAGING FACILITATES ENHANCED METABOLIC DETECTION OF GLIOMAS IN VIVO. Neuro-Oncology 2014, 16: v216-v216. PMCID: PMC4218624, DOI: 10.1093/neuonc/nou278.14.Peer-Reviewed Original ResearchChemo/radiation therapyClear tumor delineationGlioma animal modelPlasma amino acidsClinical managementIDH1 mutant gliomasAltered glutamine metabolismRadiation therapyAnimal modelsHuman gliomasPten-nullGliomasHigh avidityPET imagingLow uptakeDetection of gliomaTumor delineationHigh uptakeAnaplerotic substrateGlutamine metabolismMetabolic stateVivoBrainGlutamine uptakeMetabolismPhase IB trial of carboxyamidotriazole orotate (CTO) and temozolomide for recurrent malignant glioma (MG): A novel mechanism for modulation of multiple oncogenic pathways.
Omuro A, Kaley T, Pentsova E, DeAngelis L, Urba W, Taylor M, Anderson B, Gorman G, McLean S, Karmali R. Phase IB trial of carboxyamidotriazole orotate (CTO) and temozolomide for recurrent malignant glioma (MG): A novel mechanism for modulation of multiple oncogenic pathways. Journal Of Clinical Oncology 2014, 32: 2071-2071. DOI: 10.1200/jco.2014.32.15_suppl.2071.Peer-Reviewed Original Research
2011
Targeted Therapy for Malignant Gliomas
Dankwah-Quansah M, Omuro A. Targeted Therapy for Malignant Gliomas. Tumors Of The Central Nervous System 2011, 299-307. DOI: 10.1007/978-94-007-0344-5_31.Peer-Reviewed Original ResearchMalignant gliomasAggressive primary brain tumorFatal disease outcomeSingle-agent trialsSingle-agent treatmentPrimary brain tumorsAkt/mTORDevelopment of combinationsAgent trialsDismal prognosisPatient selectionStandard treatmentTargeted therapyDisease outcomeAnaplastic astrocytomaAnaplastic oligodendrogliomaBrain tumorsTherapy trialsNew treatmentsPathway inhibitionGliomasAgent treatmentTrialsRas/MAPKPromising activity
2010
Phase II trial of continuous low-dose temozolomide (TMZ) for recurrent malignant glioma (MG) with and without prior exposure to bevacizumab (BEV).
Khasraw M, Abrey L, Lassman A, Hormigo A, Nolan C, Gavrilovic I, Mellinghoff I, Reiner A, DeAngelis L, Omuro A. Phase II trial of continuous low-dose temozolomide (TMZ) for recurrent malignant glioma (MG) with and without prior exposure to bevacizumab (BEV). Journal Of Clinical Oncology 2010, 28: 2065-2065. DOI: 10.1200/jco.2010.28.15_suppl.2065.Peer-Reviewed Original ResearchA phase I safety and pharmacokinetic study of XL765 (SAR245409), a novel PI3K/TORC1/TORC2 inhibitor, in combination with temozolomide (TMZ) in patients (pts) with newly diagnosed malignant glioma.
Nghiemphu P, Omuro A, Cloughesy T, Mellinghoff I, Norden A, Nguyen L, Rajangam K, Wen P. A phase I safety and pharmacokinetic study of XL765 (SAR245409), a novel PI3K/TORC1/TORC2 inhibitor, in combination with temozolomide (TMZ) in patients (pts) with newly diagnosed malignant glioma. Journal Of Clinical Oncology 2010, 28: 3085-3085. DOI: 10.1200/jco.2010.28.15_suppl.3085.Peer-Reviewed Original ResearchNitrosourea-based chemotherapy for low grade gliomas failing initial treatment with temozolomide
Kaloshi G, Sierra del Rio M, Ducray F, Psimaras D, Idbaih A, Laigle-Donadey F, Taillibert S, Houillier C, Dehais C, Omuro A, Sanson M, Delattre JY, Hoang-Xuan K. Nitrosourea-based chemotherapy for low grade gliomas failing initial treatment with temozolomide. Journal Of Neuro-Oncology 2010, 100: 439-441. PMID: 20464625, DOI: 10.1007/s11060-010-0197-6.Peer-Reviewed Original ResearchConceptsLow-grade gliomasGrade gliomasProgressive low-grade gliomaTerms of PFSContrast enhancementEfficacy of nitrosoureasBetter PFSMedian PFSMedian OSObjective responseSalvage treatmentUpfront therapyMedian ageBetter prognosisInitial treatmentConventional radiotherapyChromosome 1p/19q codeletionNon-enhancing tumorResponse ratePatientsTemozolomidePure oligodendrogliomasPFSGliomasDisappointing results
2009
Antiangiogenic Strategies for the Treatment of Gliomas
Bazzoli E, Omuro A. Antiangiogenic Strategies for the Treatment of Gliomas. 2009, 243-263. DOI: 10.1007/978-1-4419-0410-2_12.Peer-Reviewed Original ResearchMalignant gliomasAntiangiogenic strategiesVascular endothelial growth factor (VEGF) pathwayEndothelial growth factor pathwayNew antiangiogenic treatmentsRecurrent malignant gliomaProgression-free survivalVEGF monoclonal antibodyInitial clinical benefitTreatment of gliomaHigh response rateGrowth factor pathwaysDifferent molecular driversMost patientsSurvival benefitClinical benefitAntiangiogenic treatmentAntiangiogenic drugsAntiangiogenesis treatmentResponse rateSolid tumorsComplex biologic processClinical settingFactor pathwayGliomas
2008
What is the place of bevacizumab and irinotecan in the treatment of glioblastoma and other malignant gliomas?
Omuro AM, Delattre JY. What is the place of bevacizumab and irinotecan in the treatment of glioblastoma and other malignant gliomas? Current Opinion In Neurology 2008, 21: 717-719. PMID: 18989118, DOI: 10.1097/wco.0b013e3283184625.Peer-Reviewed Original ResearchConceptsMalignant gliomasOverall survivalClinical trialsProspective phase II trialPlace of bevacizumabProgression-free survivalPhase II trialNew treatment strategiesHigh response rateTreatment of glioblastomaII trialRecurrent diseaseSalvage treatmentCytotoxic chemotherapyMost patientsConventional radiographic methodsDisease progressionHistorical controlsSurvival resultsRadiographic criteriaTreatment strategiesBevacizumabResponse rateNew treatmentsGliomas
2007
Editorial: what is new in the treatment of gliomas?
Omuro AM, Delattre JY. Editorial: what is new in the treatment of gliomas? Current Opinion In Neurology 2007, 20: 704-707. PMID: 17992093, DOI: 10.1097/wco.0b013e3282f1beef.Peer-Reviewed Original ResearchConceptsTreatment of gliomaTherapeutic decisionsEvidence-based therapeutic decisionsBevacizumab-based combinationsRecurrent malignant gliomaRole of chemotherapyPhase II trialStandard of carePhase III evidenceHigh response ratePhase II resultsSingle positive resultTemozolomide concomitantTemozolomide schedulesII trialSurvival benefitRandomized trialsGrade IIIMalignant gliomasResponse rateGliomasSuch trialsTraditional treatmentTrialsCodeletion statusMolecular genetic markers as predictors of response to chemotherapy in gliomas
Idbaih A, Omuro A, Ducray F, Hoang-Xuan K. Molecular genetic markers as predictors of response to chemotherapy in gliomas. Current Opinion In Oncology 2007, 19: 606-611. PMID: 17906460, DOI: 10.1097/cco.0b013e3282f075f3.Peer-Reviewed Original ResearchConceptsAnaplastic oligodendroglial tumorsLow-grade gliomasProspective trialMGMT statusOligodendroglial tumorsIndependent favorable prognostic factorFavorable prognostic factorRelevant prognostic markerPredictors of responsePromoter methylationTreatment of gliomaPredictor of chemosensitivityMGMT promoter methylationObjective responsePrognostic factorsRetrospective studyPrognostic markerSuch tumorsTreatment decisionsChromosome 1p/19q codeletionMGMT inactivationPredictive valueChemotherapyGliomasLow expressionDynamic history of low‐grade gliomas before and after temozolomide treatment
Ricard D, Kaloshi G, Amiel‐Benouaich A, Lejeune J, Marie Y, Mandonnet E, Kujas M, Mokhtari K, Taillibert S, Laigle‐Donadey F, Carpentier AF, Omuro A, Capelle L, Duffau H, Cornu P, Guillevin R, Sanson M, Hoang‐Xuan K, Delattre J. Dynamic history of low‐grade gliomas before and after temozolomide treatment. Annals Of Neurology 2007, 61: 484-490. PMID: 17469128, DOI: 10.1002/ana.21125.Peer-Reviewed Original ResearchConceptsMean tumor diameterLow-grade gliomasMajority of tumorsTemozolomide treatmentImpact of temozolomideSerial magnetic resonance imagesUntreated low-grade gliomaGenetic alterationsNeoadjuvant temozolomideTumor diameterContinuous administrationP53 overexpressionOptimal durationTumor progressionTumorsTemozolomidePatientsGliomasMagnetic resonance imagesNatural progressionTreatmentProgressive growthLower ratesResonance imagesP53
2005
EGFR tyrosine kinase domain mutations in human gliomas
Marie Y, Carpentier A, Omuro A, Sanson M, Thillet J, Hoang-Xuan K, Delattre J. EGFR tyrosine kinase domain mutations in human gliomas. Neurology 2005, 64: 1444-1445. PMID: 15851741, DOI: 10.1212/01.wnl.0000158654.07080.b0.Peer-Reviewed Original ResearchConceptsLung cancerEGFR tyrosine kinase domain mutationsEpidermal growth factor receptor tyrosine kinase inhibitorsGrowth factor receptor tyrosine kinase inhibitorsTyrosine kinase domain mutationsReceptor tyrosine kinase inhibitorsKinase domain mutationsTyrosine kinase inhibitorsLow-grade gliomasEGFR tyrosine kinase domainResistance of glioblastomaAnaplastic oligodendrogliomaHuman gliomasGliomasTyrosine kinase domainExon 19Kinase inhibitorsDomain mutationsGefitinibCancerGlioblastomaSuch mutationsMutationsPatientsEGFR