2020
An allosteric site on MKP5 reveals a strategy for small-molecule inhibition
Gannam Z, Min K, Shillingford SR, Zhang L, Herrington J, Abriola L, Gareiss PC, Pantouris G, Tzouvelekis A, Kaminski N, Zhang X, Yu J, Jamali H, Ellman JA, Lolis E, Anderson KS, Bennett AM. An allosteric site on MKP5 reveals a strategy for small-molecule inhibition. Science Signaling 2020, 13 PMID: 32843541, PMCID: PMC7569488, DOI: 10.1126/scisignal.aba3043.Peer-Reviewed Original ResearchMeSH KeywordsAllosteric SiteAmino Acid SequenceAnimalsCell DifferentiationCell LineDual-Specificity PhosphatasesEnzyme InhibitorsFemaleHigh-Throughput Screening AssaysHumansKineticsMiceMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesMyoblastsProtein BindingSequence Homology, Amino AcidSignal TransductionSmall Molecule LibrariesConceptsDystrophic muscle diseaseMitogen-activated protein kinaseMuscle diseaseTGF-β1Promising therapeutic targetP38 mitogen-activated protein kinaseTherapeutic strategiesTherapeutic targetSmall molecule inhibitionSmad2 phosphorylationDiseasePotential targetSmall-molecule screenInhibitorsTreatmentInhibitionTyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines
Yi JS, Perla S, Enyenihi L, Bennett AM. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020, 5 PMID: 32584792, PMCID: PMC7455087, DOI: 10.1172/jci.insight.137753.Peer-Reviewed Original ResearchConceptsProtein tyrosine phosphataseTyrosyl phosphorylationNSML micePhosphorylation-defective mutantPTPN11 mutationsS6 kinase activityPZR tyrosyl phosphorylationTyrosine phosphataseS6 kinasePathophysiological signalingKinase activityShp2 interactionMutant fibroblastsSHP2Transmembrane glycoproteinMultiple lentiginesNoonan syndromeCraniofacial defectsPTPN11 geneHeart lysatesPhosphorylationSHP2 bindingMutationsNF-κB pathwayProtein zero
2019
O-GlcNAc transferase suppresses necroptosis and liver fibrosis
Zhang B, Li MD, Yin R, Liu Y, Yang Y, Mitchell-Richards KA, Nam JH, Li R, Wang L, Iwakiri Y, Chung D, Robert ME, Ehrlich BE, Bennett AM, Yu J, Nathanson MH, Yang X. O-GlcNAc transferase suppresses necroptosis and liver fibrosis. JCI Insight 2019, 4: e127709. PMID: 31672932, PMCID: PMC6948774, DOI: 10.1172/jci.insight.127709.Peer-Reviewed Original ResearchConceptsReceptor-interacting protein kinase 3Liver fibrosisLiver diseaseHepatocyte necroptosisEthanol-induced liver injuryAlcoholic liver cirrhosisChronic liver diseaseMultiple liver diseasesWeeks of ageProtein expression levelsPortal inflammationLiver cirrhosisLiver injuryBallooning degenerationElevated protein expression levelsSpontaneous genetic modelFibrosisKey suppressorKey mediatorMiceProtein kinase 3CirrhosisExpression levelsGlcNAc levelsMixed lineage kinaseRole of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis
Xylourgidis N, Min K, Ahangari F, Yu G, Herazo-Maya JD, Karampitsakos T, Aidinis V, Binzenhöfer L, Bouros D, Bennett AM, Kaminski N, Tzouvelekis A. Role of dual-specificity protein phosphatase DUSP10/MKP-5 in pulmonary fibrosis. American Journal Of Physiology - Lung Cellular And Molecular Physiology 2019, 317: l678-l689. PMID: 31483681, PMCID: PMC6879900, DOI: 10.1152/ajplung.00264.2018.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibiotics, AntineoplasticBleomycinDual-Specificity PhosphatasesFemaleFibroblastsHumansMAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMitogen-Activated Protein Kinase PhosphatasesPhosphorylationPulmonary FibrosisSignal TransductionTransforming Growth Factor beta1ConceptsPulmonary fibrosisLung fibrosisFibrogenic genesLung fibroblastsM1 macrophage phenotypeIdiopathic pulmonary fibrosisHuman lung fibrosisGrowth factor-β1Levels of hydroxyprolineProtein kinase phosphatase 5IPF lungsReduced fibrosisMuscle fibrosisProfibrogenic effectsTGF-β1Smad7 levelsTherapeutic targetAnimal modelsFactor-β1FibrosisSmad3 phosphorylationEnhanced p38 MAPK activityP38 MAPK activityMyofibroblast differentiationMKP-5 expression
2013
Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5
Shi H, Verma M, Zhang L, Dong C, Flavell RA, Bennett AM. Improved regenerative myogenesis and muscular dystrophy in mice lacking Mkp5. Journal Of Clinical Investigation 2013, 123: 2064-2077. PMID: 23543058, PMCID: PMC3635719, DOI: 10.1172/jci64375.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell ProliferationCrosses, GeneticDual-Specificity PhosphatasesDystrophinFemaleMaleMAP Kinase Kinase 4MAP Kinase Signaling SystemMiceMice, Inbred C57BLMice, KnockoutMuscle, SkeletalMusclesMuscular Dystrophy, DuchenneMutationP38 Mitogen-Activated Protein KinasesRegenerationStem CellsConceptsMuscle stem cell functionMitogen-activated protein kinaseStem cell functionMKP-5MAPK phosphataseSkeletal muscle diseasesRegenerative myogenesisCell functionMuscle stem cell proliferationP38 mitogen-activated protein kinaseMuscle stem cellsDegenerative skeletal muscle diseaseStem cell proliferationEssential negative regulatorProtein kinaseMuscle diseaseNegative regulatorMAPK activityGenetic lossMKP5Muscle phenotypeDystrophic muscle phenotypeStem cellsMuscular dystrophyCell proliferation
2011
Loss of Mitogen-activated Protein Kinase Phosphatase-1 Protects from Hepatic Steatosis by Repression of Cell Death-inducing DNA Fragmentation Factor A (DFFA)-like Effector C (CIDEC)/Fat-specific Protein 27*
Flach RJ, Qin H, Zhang L, Bennett AM. Loss of Mitogen-activated Protein Kinase Phosphatase-1 Protects from Hepatic Steatosis by Repression of Cell Death-inducing DNA Fragmentation Factor A (DFFA)-like Effector C (CIDEC)/Fat-specific Protein 27*. Journal Of Biological Chemistry 2011, 286: 22195-22202. PMID: 21521693, PMCID: PMC3121364, DOI: 10.1074/jbc.m110.210237.Peer-Reviewed Original ResearchConceptsMitogen-activated protein kinase phosphatase-1Hepatic lipid homeostasisFatty acid oxidationLipid homeostasisMKP-1-deficient miceProtein kinase phosphatase-1MAPK-dependent phosphorylationFat-specific protein 27Like effector CPeroxisome proliferator-activated receptor-γ target genesProtein 27Kinase phosphatase-1Lipid droplet formationPhosphatase 1Acid oxidationLipogenic gene expressionSerine 112Target genesHepatic lipogenic gene expressionGene expressionPPARγ functionMetabolic signalsInhibitory residuesFactor AHepatic fatty acid oxidation
2010
The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching
Jeanneteau F, Deinhardt K, Miyoshi G, Bennett AM, Chao MV. The MAP kinase phosphatase MKP-1 regulates BDNF-induced axon branching. Nature Neuroscience 2010, 13: 1373-1379. PMID: 20935641, PMCID: PMC2971689, DOI: 10.1038/nn.2655.Peer-Reviewed Original ResearchAnimalsAxonsBrain-Derived Neurotrophic FactorCells, CulturedCerebral CortexDual Specificity Phosphatase 1ElectroporationEmbryo, MammalianFemaleGene Expression Regulation, EnzymologicGreen Fluorescent ProteinsHomeodomain ProteinsJNK Mitogen-Activated Protein KinasesMiceMice, TransgenicMicrotubulesNeuronsPregnancyRatsRats, Sprague-DawleyTransfection