2024
Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation
Lallai V, Lam T, Garcia-Milian R, Chen Y, Fowler J, Manca L, Piomelli D, Williams K, Nairn A, Fowler C. Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation. Biomolecules 2024, 14: 1143. PMID: 39334909, PMCID: PMC11430348, DOI: 10.3390/biom14091143.Peer-Reviewed Original ResearchConceptsImmediate early gene c-fosChronic THC exposureEarly gene c-fosCannabinoid 1 receptorGene c-fosSex-specific mannerTHC exposurePsychoactive componentExtracellular vesiclesCentral signaling mechanismDrug effectsTHCChoroid plexus epithelial cellsFemale ratsC-fosPlexus epithelial cellsBrainCannabisRelease of EVsRegulate intercellular communicationCerebrospinal fluidEpithelial cellsIntercellular signaling mediatorsEV signalingIntercellular communication
2018
Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons
Li D, Musante V, Zhou W, Picciotto MR, Nairn AC. Striatin-1 is a B subunit of protein phosphatase PP2A that regulates dendritic arborization and spine development in striatal neurons. Journal Of Biological Chemistry 2018, 293: 11179-11194. PMID: 29802198, PMCID: PMC6052221, DOI: 10.1074/jbc.ra117.001519.Peer-Reviewed Original ResearchConceptsSerine/threonine phosphatase PP2AStriatin-interacting phosphataseRNA knockdown approachB subunitSTRIPAK complexPhosphatase PP2AProtein phosphataseMultiprotein complexesKnockdown approachStriatin familyMutant constructsStriatal neuronal culturesPP2ANeuronal developmentPrimary striatal neuronal culturesDendritic phenotypeKnockdown modelSynapse formationSubunitsSpine developmentSelective roleReduced expressionNeuron maturationNeuronal culturesStriatal neurons
2015
STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease
Kurup PK, Xu J, Videira RA, Ononenyi C, Baltazar G, Lombroso PJ, Nairn AC. STEP61 is a substrate of the E3 ligase parkin and is upregulated in Parkinson’s disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 1202-1207. PMID: 25583483, PMCID: PMC4313846, DOI: 10.1073/pnas.1417423112.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCorpus StriatumCyclic AMP Response Element-Binding ProteinDown-RegulationGene Expression Regulation, EnzymologicHEK293 CellsHumansMAP Kinase Signaling SystemMiceMice, KnockoutMitogen-Activated Protein Kinase 3MPTP PoisoningProtein Tyrosine Phosphatases, Non-ReceptorRatsRats, Sprague-DawleyUbiquitinationUbiquitin-Protein LigasesUp-RegulationConceptsE3 ubiquitin ligase ParkinSubstantia nigra pars compactaPathophysiology of PDProtein tyrosine phosphataseUbiquitin ligase ParkinSporadic Parkinson's diseaseE3 ligase ParkinRegulation of ParkinParkinson's diseaseTyrosine phosphataseParkin mutantsE3 ligaseProteasome systemDopaminergic neuronsDownstream targetsAutosomal recessive juvenile parkinsonismNovel substrateSTEP61ParkinCellular modelSTEP61 levelsSNc dopaminergic neuronsProtein levelsFunction contributesERK1/2
2001
Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals
Jovanovic J, Sihra T, Nairn A, Hemmings H, Greengard P, Czernik A. Opposing Changes in Phosphorylation of Specific Sites in Synapsin I During Ca2+-Dependent Glutamate Release in Isolated Nerve Terminals. Journal Of Neuroscience 2001, 21: 7944-7953. PMID: 11588168, PMCID: PMC6763853, DOI: 10.1523/jneurosci.21-20-07944.2001.Peer-Reviewed Original ResearchConceptsDependent dephosphorylationProtein phosphatase 2AMultiple protein kinasesPhosphorylation site 1Protein phosphatase 2BSynapsin IPhosphatase 2APhosphorylation sitesPhosphatase 2BSynapsin functionProtein kinaseDependent phosphorylationSynapsin I phosphorylationDephosphorylation processNeuronal phosphoproteinSynapsin I.Synaptic vesiclesCalcineurin activityPhosphorylationI phosphorylationDephosphorylationNeurotransmitter releaseSpecific sitesExcellent substrateSite 1Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes
Everett A, Stoops T, Nairn A, Brautigan D. Angiotensin II regulates phosphorylation of translation elongation factor-2 in cardiac myocytes. AJP Heart And Circulatory Physiology 2001, 281: h161-h167. PMID: 11406481, DOI: 10.1152/ajpheart.2001.281.1.h161.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin IIAnimalsCells, CulturedChromonesEnzyme InhibitorsMitogen-Activated Protein KinasesMorpholinesMyocardiumPeptide Elongation Factor 2Phosphoprotein PhosphatasesPhosphorylationProtein BiosynthesisProtein Phosphatase 2RatsRats, Sprague-DawleyReceptor, Angiotensin, Type 1Receptor, Angiotensin, Type 2Receptors, AngiotensinSignal TransductionSirolimusConceptsEukaryotic elongation factor 2Mitogen-activated protein kinaseElongation factor 2Protein phosphatase 2A inhibitor okadaic acidTranslation elongation factor 2Protein synthesisInhibitor okadaic acidFactor 2Rapamycin (mTOR) inhibitor rapamycinProtein translationDephosphorylated statePolypeptide elongationII-dependent increaseProtein kinaseEEF2 kinaseOkadaic acidDependent regulationInhibitor FK506MAPK activationPD 98059Cardiac myocytesDephosphorylationInhibitor rapamycinNeonatal cardiac myocytesRat neonatal cardiac myocytesARPP‐16/ARPP‐19: a highly conserved family of cAMP‐regulated phosphoproteins
Dulubova I, Horiuchi A, Snyder G, Girault J, Czernik A, Shao L, Ramabhadran R, Greengard P, Nairn A. ARPP‐16/ARPP‐19: a highly conserved family of cAMP‐regulated phosphoproteins. Journal Of Neurochemistry 2001, 77: 229-238. DOI: 10.1046/j.1471-4159.2001.00191.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCHO CellsConserved SequenceCorpus StriatumCricetinaeCyclic AMPCyclic AMP-Dependent Protein KinasesHumansIn Vitro TechniquesMaleMiceMultigene FamilyOrgan SpecificityPhosphoproteinsPhosphorylationProtein IsoformsRatsRats, Sprague-DawleyReceptors, Dopamine D1Receptors, Dopamine D2Sequence Homology, Amino AcidConceptsProtein kinase AARPP-19ARPP-16Family of cAMPImportant cellular functionsActivation of PKAIsoform-specific antibodiesYeast genomeD. melanogasterC. elegansProtein familyCellular functionsNon-neuronal cellsSignal transductionConsensus sitesKinase ARelated proteinsΑ-endosulfinePhosphorylated formIntact cellsIntracellular messengerBi-directional regulationDopamine receptorsFamily membersPhosphorylationARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins.
Dulubova I, Horiuchi A, Snyder G, Girault J, Czernik A, Shao L, Ramabhadran R, Greengard P, Nairn A. ARPP-16/ARPP-19: a highly conserved family of cAMP-regulated phosphoproteins. Journal Of Neurochemistry 2001, 77: 229-38. PMID: 11279279, DOI: 10.1046/j.1471-4159.2001.t01-1-00191.x.Peer-Reviewed Original ResearchMeSH KeywordsAmino Acid SequenceAnimalsCHO CellsConserved SequenceCorpus StriatumCricetinaeCyclic AMPCyclic AMP-Dependent Protein KinasesHumansIn Vitro TechniquesMaleMiceMultigene FamilyOrgan SpecificityPhosphoproteinsPhosphorylationProtein IsoformsRatsRats, Sprague-DawleyReceptors, Dopamine D1Receptors, Dopamine D2Sequence Homology, Amino AcidConceptsProtein kinase AARPP-19ARPP-16Family of cAMPImportant cellular functionsActivation of PKAIsoform-specific antibodiesYeast genomeD. melanogasterC. elegansProtein familyCellular functionsNon-neuronal cellsSignal transductionConsensus sitesType dopamine receptorsKinase ARelated proteinsPhosphorylated formIntact cellsDopamine receptorsIntracellular messengerBi-directional regulationFamily membersPhosphorylationEffects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5
Bibb J, Chen J, Taylor J, Svenningsson P, Nishi A, Snyder G, Yan Z, Sagawa Z, Ouimet C, Nairn A, Nestler E, Greengard P. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001, 410: 376-380. PMID: 11268215, DOI: 10.1038/35066591.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsBrainCocaineCocaine-Related DisordersCorpus StriatumCyclin-Dependent Kinase 5Cyclin-Dependent KinasesDopamineDopamine and cAMP-Regulated Phosphoprotein 32Enzyme InhibitorsGene Expression Regulation, EnzymologicKinetinMaleMiceMice, TransgenicNerve Tissue ProteinsNeuronsOligonucleotide Array Sequence AnalysisPhosphoproteinsPhosphorylationProto-Oncogene Proteins c-fosPsychomotor PerformancePurinesRatsRats, Sprague-DawleyReceptors, Dopamine D1RoscovitineSignal TransductionConceptsTranscription factorsSuch transcription factorsDownstream target genesCyclin-dependent kinase 5DNA array analysisTarget genesGene expressionCocaine administrationKinase 5Inducible transgenic miceChronic exposureCdk5 inhibitorMessenger RNACocaine addictionArray analysisDopamine-mediated neurotransmissionDopamine-containing nerve terminalsMedium spiny neuronsD1 dopamine receptorsChronic cocaine administrationOverexpression of ΔFosBProteinTransgenic miceAdaptive changesSpiny neurons
2000
The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway
Paul S, Snyder G, Yokakura H, Picciotto M, Nairn A, Lombroso P. The Dopamine/D1 Receptor Mediates the Phosphorylation and Inactivation of the Protein Tyrosine Phosphatase STEP via a PKA-Dependent Pathway. Journal Of Neuroscience 2000, 20: 5630-5638. PMID: 10908600, PMCID: PMC6772528, DOI: 10.1523/jneurosci.20-15-05630.2000.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCatalytic DomainCorpus StriatumCyclic AMP-Dependent Protein KinasesEnzyme ActivationIn Vitro TechniquesMaleMolecular Sequence DataNeuronsPhosphoproteinsPhosphorus RadioisotopesPhosphorylationProtein Tyrosine PhosphatasesProtein Tyrosine Phosphatases, Non-ReceptorRatsRats, Sprague-DawleyReceptors, Dopamine D1Signal TransductionConceptsProtein tyrosine phosphatase familyCAMP-dependent protein kinaseTryptic phosphopeptide mappingPotential phosphorylation sitesUnique N-terminalProtein-protein interactionsMembrane-associated proteinsRole of phosphorylationTyrosine phosphatase familyAmino acid sequenceSite-directed mutagenesisAmino acid sequencingPKA-dependent pathwayTyrosine phosphatase STEPPhosphatase familyPhosphopeptide mappingPhosphorylation sitesAlternative splicingSubcellular compartmentsProtein kinaseTerminal domainEquivalent residuesCytosolic proteinsSpecific residuesAcid sequenceProstaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution
Zelenina M, Christensen B, Palmér J, Nairn A, Nielsen S, Aperia A. Prostaglandin E2 interaction with AVP: effects on AQP2 phosphorylation and distribution. American Journal Of Physiology. Renal Physiology 2000, 278: f388-f394. PMID: 10710543, DOI: 10.1152/ajprenal.2000.278.3.f388.Peer-Reviewed Original ResearchConceptsTranslocation of AQP2AQP2 phosphorylationPlasma membraneAquaporin-2Subcellular distributionPlasma membrane-enriched fractionVesicle-enriched fractionsMembrane-enriched fractionDuct water permeabilityConsensus sitesIntracellular vesiclesPhosphorylationDifferential centrifugation techniqueAction of arginineRenal inner medullaE2 interactionRat renal inner medullaTranslocationInner medullaDose-dependent mannerWater channelsMembraneDephosphorylationTraffickingProtein
1999
The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation
Tsumura T, Murata A, Yamaguchi F, Sugimoto K, Hasegawa E, Hatase O, Nairn A, Tokuda M. The expression of Ca2+/calmodulin-dependent protein kinase I in rat retina is regulated by light stimulation. Vision Research 1999, 39: 3165-3173. PMID: 10615488, DOI: 10.1016/s0042-6989(99)00063-2.Peer-Reviewed Original ResearchRegulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †
McAvoy T, Allen P, Obaishi H, Nakanishi H, Takai Y, Greengard P, Nairn A, Hemmings H. Regulation of Neurabin I Interaction with Protein Phosphatase 1 by Phosphorylation †. Biochemistry 1999, 38: 12943-12949. PMID: 10504266, DOI: 10.1021/bi991227d.Peer-Reviewed Original ResearchConceptsProtein phosphatase 1Neurabin IPP1 activityPhosphatase 1Two-hybrid interaction analysisActin-binding proteinsCo-immunoprecipitation experimentsMimic phosphorylationSerine 461Phosphorylated residuesGlutathione S-transferaseOverlay assaysFusion proteinSignaling mechanismGamma isoformsCAMP pathwayPhosphorylationS-transferaseProteinTryptic digestPKARegulationHPLC-MS analysisInteraction analysisS461Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue
Nishimoto G, Zelenina M, Li D, Yasui M, Aperia A, Nielsen S, Nairn A. Arginine vasopressin stimulates phosphorylation of aquaporin-2 in rat renal tissue. American Journal Of Physiology 1999, 276: f254-f259. PMID: 9950956, DOI: 10.1152/ajprenal.1999.276.2.f254.Peer-Reviewed Original ResearchConceptsPhosphorylation of AQP2Protein kinase AAquaporin-2Two-dimensional phosphopeptide mappingCAMP-dependent protein kinase AConsensus phosphorylation sitesActivation of PKAPhosphopeptide mappingPhosphorylation sitesMaximal phosphorylationAQP2 phosphorylationKinase APhosphorylationSer256Immunoblot analysis
1994
Subcellular localization of CFTR to endosomes in a ductal epithelium
Webster P, Vanacore L, Nairn A, Marino C. Subcellular localization of CFTR to endosomes in a ductal epithelium. American Journal Of Physiology 1994, 267: c340-c348. PMID: 7521124, DOI: 10.1152/ajpcell.1994.267.2.c340.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCell MembraneCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorEndocytosisEpitheliumFluorescent Antibody TechniqueImmunohistochemistryMaleMembrane ProteinsMicroscopy, FluorescenceOrganellesRatsRats, Sprague-DawleyReceptors, Cell SurfaceSubcellular FractionsSubmandibular GlandTissue DistributionConceptsCystic fibrosis transmembrane conductance regulatorPlasma membraneFibrosis transmembrane conductance regulatorApical plasma membraneAnti-CFTR antibodiesNormal epithelial cell populationsTransmembrane conductance regulatorCytochemical evidenceReceptor-mediated endocytosisCFTR moleculesEpithelial cell populationsCellular processesSubcellular compartmentsSubcellular localizationEarly endosomesMembrane recyclingConductance regulatorSubcellular distributionSubapical vesiclesApical poleEndosomesCFTR functionImmunoelectron microscopyCell populationsCFTR immunoreactivityRole of elongation factor 2 in regulating peptide-chain elongation in the heart
Vary T, Nairn A, Lynch C. Role of elongation factor 2 in regulating peptide-chain elongation in the heart. American Journal Of Physiology 1994, 266: e628-e634. PMID: 7513958, DOI: 10.1152/ajpendo.1994.266.4.e628.Peer-Reviewed Original ResearchConceptsDiabetic ratsEF-2 contentFactor 2Protein synthesisInsulin therapyIncrease of RNADecreased translational efficiencyElongation factor 2RatsDiabetesCardiac muscleImpaired rateDecreased rateProgressive decreaseHeartInhibitionMolecular mechanismsRNA contentPeptide chain elongationH durationTherapyInsulinDecrease
1993
Phosphorylation of elongation factor 2 in normal and malignant rat glial cells.
Bagaglio DM, Cheng EH, Gorelick FS, Mitsui K, Nairn AC, Hait WN. Phosphorylation of elongation factor 2 in normal and malignant rat glial cells. Cancer Research 1993, 53: 2260-4. PMID: 8485712.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsCalciumCalcium-Calmodulin-Dependent Protein KinasesCalmodulinCell DivisionCells, CulturedElongation Factor 2 KinaseGliomaMaleNeurogliaPeptide Elongation Factor 2Peptide Elongation FactorsPhosphorylationPrecipitin TestsProtein KinasesRatsRats, Sprague-DawleyTrifluoperazineTumor Cells, CulturedConceptsRat brain white matterNormal glial tissueGlial tissueGlioma cellsC6 cellsC6 rat glioma cellsCaM kinase IIIRat glial cellsFactor 2Rat glioma cellsBrain white matterNormal gliaElongation factor 2Glial cellsRat brainWhite matterTumor tissueBasal levelsIII activityCellular proliferationTissueDependent proteinsCellsEndogenous substratesHomogenates